首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
杜勤博 《广东气象》2012,34(3):10-12
根据潮阳气象站1959~2011年逐日降水资料,研究了近53年来潮阳区降水的变化特征,结果表明,前汛期和后汛期各个降水指数变化规律存在很大区别:(1)前汛期降水量、降水强度、降水频率和暴雨日数均呈下降趋势,而后汛期降水量、降水强度和暴雨日数呈上升趋势;(2)前汛期存在8年和3年的短周期,后汛期周期变化不明显;(3)前汛期极端降水量发生突变,分别是1965年和1985年,20世纪90年代后极端降水量呈明显下降趋势,而后汛期极端降水量在20世纪90年代后呈上升趋势.  相似文献   

2.
长江下游地区汛期暴雨气候特征分析   总被引:10,自引:1,他引:9  
IPCC(1995)第二次科学评估报告指出了极端气象事件变化研究的重要意义[1].长江下游地区地势低平,往往是我国暴雨洪涝的多发区域,造成严重灾害,因此,研究长江下游地区暴雨的规律具有极其重要的意义.选取了长江下游地区52站1960~2003年逐日降水资料,运用EOF分析将其分为3个分区,采用小波分析,Mann-kendall非参数检验法及趋势系数法等分析方法研究各分区汛期暴雨降水的气候统计特征.结果表明:虽然汛期同为暴雨降水的集中时期,但各分区暴雨降水在汛期降水中所占比重略有差异,暴雨降水量、频次所占比例的空间分布为西区较大、东区和北区略小,暴雨平均强度则西区和北区东部强、其他区域小.同一区域中降水量与频次具有显著的正相关,不同区域间仅暴雨降水量的相关性较好.暴雨降水量44 a中呈现了增加的趋势.各区汛期暴雨具有多重时间尺度的周期变化,暴雨降水量和频次的周期在西区与全区的较为一致,主要是6~9 a的周期振荡.东区和北区有着不同尺度的振荡周期.各区的暴雨降水强度都不同程度地存在着3 a的周期振荡.长江下游地区汛期暴雨降水量除北区外,全区及其他分区的突变时刻均发生在1980年代末~1990年代初这一时期,暴雨降水量在1980年代中期~20世纪末出现了一个增长的过程,北区趋势并不显著.全区暴雨平均强度在突变时刻之后有一个减弱的过程,而西区和北区的暴雨平均强度变化并不显著.  相似文献   

3.
利用2014—2020年丹寨地区6个乡镇洪涝灾情统计数据和21个区域气象自动站逐日降水资料,采用统计分析方法,分析洪涝灾害及降水的时空分布。结果表明:2014—2020年丹寨境内共出现24次洪涝灾害,2015年6月8日洪涝灾害最重,2020年洪涝灾害最多;从月分布来看,最多最重主要在6月,最少为4月,后半夜(00—03时)是洪涝多发时段;暴雨日数与洪涝灾害时空分布基本相似。受地形作用的影响,洪涝灾害具有季节性、局地性强,成灾率较高,日变化明显等特征;扬武镇、排调镇、雅灰乡出现暴雨和洪涝灾害相对较多,兴仁镇、南皋乡相对较少;中部以南的龙泉镇、排调镇、雅灰乡、扬武镇的洪涝灾害主要因夜间和持续性强降雨导致,而北部的南皋乡、兴仁镇的洪涝灾害主要因夜间强降雨导致。  相似文献   

4.
应用福建省66站1961—2012年逐日降水资料,基于前汛期降水定量化指标,揭示福建前汛期降水强度的多尺度特征,着重分析前汛期降水强度的低频变化特征。分析结果表明:(1)福建省前汛期降水强度在20世纪70年代中期、90年代初期发生了由强到弱和由弱到强的两次明显突变,突变点为1976年和1991年。(2)在前汛期降水偏弱的年代际背景下(20世纪70年代中期—90年代初期),前汛期降水强度年际波动相对较小;而在强的年代际背景下(20世纪60年代—70年代中期和20世纪90年代初期至今),前汛期降水强度的年际波动相对剧烈,尤其2000年以来,福建前汛期降水极端事件明显增多,持续性强降水过程多发,且强度偏强。(3)福建前汛期降水强度的季节内振荡明显,降水强度与低频变化的强度成正比,即前汛期降水强度偏强(弱)年份,其低频变化信号较(不)显著。(4)前汛期降水较强的年份有75%出现显著的低频信号,且低频周期较稳定,低频周期可分为30~60d、20~30d和10~20d;25%的年份低频周期出现明显的调整。  相似文献   

5.
江西省主要气象灾害年代际变化特征分析   总被引:4,自引:4,他引:4  
利用江西省81个台站的气温、降水、大风、冰雹等资料,采用多项式回归、低通滤波等分析方法,对1959—2005年江西省主要气象灾害年代际变化进行了分析。结果发现,江西省的气象灾害呈现明显的年代际变化特征,其中暴雨洪涝在20世纪60年代、90年代为相对多发期,70—80年代相对较少,进入90年代后,大暴雨和特大暴雨出现的频率呈上升趋势,致使在全省性洪涝灾害较为严重的10个年份中,有4个出现在90年代。干旱在60年代和80年代中期—90年代初期为相对多发期,从2003年开始呈现明显的上升趋势,江西有可能进入新一轮夏秋干旱频发期。冬季低温冻害在80年代出现次数较多,最严重的冻害大多出现在60年代—70年代中期,之后在全球气候变暖的大背景下,冻害总体呈减少趋势,但极端低温事件时有发生,个别年份冻害较重。另外,大风、冰雹灾害总体呈下降趋势,尤其是大风在90年代后下降趋势明显。  相似文献   

6.
江淮梅雨期极端降水的气候特征   总被引:13,自引:4,他引:13  
应用1959—2000年江淮地区76站逐日降水资料,对梅雨期月降水量进行REOF分解。将江淮区分为4个具有不同梅雨期降水空间分布特征的区域,进而分别分析这4个区域梅雨期暴雨以上极端降水的季节、年际和年代际变化特征,以及周期振荡和突变性质。结果表明:4个区暴雨以上极端降水总量和极端降水日数最大值均发生在梅雨期,梅雨期极端降水呈上升趋势,且具有不同的年际和年代际变化特征;江淮西南区梅雨期暴雨总量和暴雨日数在20世纪90年代还存在明显上升突变现象;4个区梅雨期极端降水存在不同时间尺度的周期振荡。  相似文献   

7.
该文利用贵阳站1951—2013年逐日降水量及1961—2013年逐分钟降水量资料,对贵阳市暴雨变化趋势进行分析,其结果显示贵阳市暴雨平均雨量整体呈上升趋势,暴雨日数及总暴雨量总体呈现出下降趋势,21世纪以来贵阳市暴雨强度有所增强,近30 a的降水极端性及降水强度较强。以1981—2013年逐分钟降水资料为数据基础,依据《室外排水设计规范》(GB50014-2006,2014版)及《城市暴雨强度公式编制和设计暴雨雨型确定技术导则》(2014版)要求新修编的贵阳站暴雨强度公式,采用芝加哥雨型法确定贵阳市短历时暴雨雨型,雨峰综合系数为0.405,即雨峰位于整个降雨过程的终端偏前的时刻。  相似文献   

8.
利用甘南州8个气象观测站1983~2012年30年标准气候整编资料的逐月降水数据,联合1:25万地理信息数据,根据山地气候学原理,运用线性回归、奇异谱分析多尺度分解、GIS技术和气候突变分析等方法,对甘南州1983~2012年降水量的变化趋势和突变特征进行分析。结果表明:近30a来甘南州年均降水整体呈现减少趋势,以6.3mm/10a趋势明显减少,存在12个月的主周期和6个月的次周期,1985年为降水量变化的突变年份,1997年和2002年降水量的减少趋势显著,超过0.05临界线。   相似文献   

9.
利用宿州地区5个气象观测站1981—2015年的逐日降水资料,将Morlet小波分析方法应用于宿州地区年暴雨发生频次的统计分析,提取其时间序列的振荡周期,考察在不同时段上的变化特征;运用Mann-Kendall (M-K)非参数检验,对宿州地区35 a来的暴雨日及暴雨量进行了时间序列的特征分析和突变检验。结果表明:宿州地区1981—2015年暴雨日具有南多北少的特点,集中发生期为6—8月;近35 a来宿州地区暴雨日和年总暴雨量年际波动虽然较大,但总体呈上升趋势;宿州暴雨发生频次存在多重时间周期尺度上的嵌套复杂结构,存在着5~12 a、3~7 a的短期周期变化规律,1998年以后生成的5 a左右的震荡周期及27 a左右的中期震荡周期;宿州暴雨在2002年发生显著突变,至2008年,增加趋势接近α=0. 05上显著性水平的临界线,2008年以后又缓慢减少。  相似文献   

10.
1960-2005年长江中下游极端降水指数变化特征分析   总被引:17,自引:8,他引:9  
本文利用长江中下游流域内的81个气象站,对长江中下游极端降水指数的时空变化特征进行分析.结果发现,在时间尺度上,长江中下游地区近46 a来极端降水指数呈上升趋势,其中降水强度上升趋势最明显,各个极端降水指数在年代际尺度上具有相同的变化特征,均存在着12 a左右的周期振荡,在年际尺度上,各极端降水指数变化周期并不一致.大雨日数与其他指数相比突变时间比较早,发生在1979年,其他几个指数突变时间比较接近,出现在1990年前后.在空间变化上,除极端湿天降水量在全区均为上升趋势外,其他几种极端降水指数在江苏东部地区、湖北西北部都存在着极端降水指数的负变化趋势,高值区主要分布在江西大部、湖北东南部、湖南东北部地区.  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号