首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 464 毫秒
1.
南黄海夏季微微型浮游植物丰度的分布   总被引:1,自引:1,他引:0  
2008年8月中韩合作对南黄海生态系统进行了整体调查,调查站位共计37个。利用流式细胞仪测定了南黄海微微型浮游植物丰度,结合理化环境因子,分析了它们在夏季南黄海的分布特征。所测微微型真核浮游植物丰度平均值为1.9×103个/mL,最大值为2.4×104个/mL;聚球藻丰度平均值为5.3×104个/mL,最大值为5.1×105个/mL;从河口近岸到南黄海中部的宽阔海域,随着环境因子的变化,微微型浮游植物在各海区的分布明显不同,表现为河口近岸区域丰度大,离岸丰度小的特点;各站位丰度垂直分布主要趋势是上大下小,在跃层突出。根据分布趋势,聚球藻可分为两种垂直分布类型,微微型真核浮游植物分为三种。这些分布差异源于长江冲淡水和黄海冷水团的影响。  相似文献   

2.
Seasonal variations in the picoplankton community were investigated from June 2002 to March 2004 within the photic zone of Sagami Bay, Japan. The study area was mostly dominated by coastal waters during the warm period (mixed layer water temperature ≥ 18°C). During the cold period (mixed layer water temperature ≤ 18°C), the water mass was characterized by low temperature and high saline waters indicative of the North Pacific Subtropical Mode Water (NPSTMW). Occasionally, a third type of water mass characterized by high temperature and low saline properties was observed, which could be evidence of the intrusion of warm Kuroshio waters. Synechococcus was the dominant picophytoplankton (5−28 × 1011 cells m−2) followed by Prochlorococcus (1−5 × 1011 cells m−2) and picoeukaryotes during the warm period. Heterotrophic bacteria dominated the picoplankton community throughout the year, especially in the warm period. During the Kuroshio Current advection, cyanobacterial abundance was high whereas that of picoeukaryotes and heterotrophic bacteria was low. During the cold period, homogeneously distributed, lower picophytoplankton cell densities were observed. The dominance of Synechococcus in the warm period reflects the importance of high temperature, low salinity and high Photosynthetically Active Radiation (PAR) on its distribution. Cyanobacterial and heterotrophic bacterial abundance showed a positive correlation with temperature. Prochlorococcus and picoeukaryotes showed a positive correlation with nutrients. Picoeukaryotes were the major contributors to the picophytoplankton carbon biomass. The annual picophytoplankton contribution to the photosynthetic biomass was 32 ± 4%. These observations suggest that the environmental conditions, combined with the seasonal variability in the source of the water mass, determines the community structure of picoplankton, which contributes substantially to the phytoplankton biomass and can play a very important role in the food web dynamics of Sagami Bay.  相似文献   

3.
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September–October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5×1013, 1.3×1011 and 1.5×1011 cells m−2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g m−2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2×1013, 6.2×1011 and 5.1×1011 cells m−2, respectively. The integrated biomass was 1.9 g C m−2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg m−2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg m−2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.  相似文献   

4.
为全面了解黄海典型海区微微型浮游植物的季节变化特征,于2009年7月至2010年6月在北黄海獐子岛海域和2010年1~12月在南黄海胶州湾进行逐月调查采样,利用流式细胞仪检测了表层海水中微微型浮游植物(picophytoplankton)的丰度,包括聚球藻(Synechococcus,SYN)和微微型真核浮游植物(picoeukaryotes,PEUK),并分析了其与环境因子的关系。獐子岛海域和胶州湾SYN和PEUK全年广泛分布,獐子岛海域SYN丰度范围在0.05×103~120.00×103cells/mL之间,丰度在秋季最高;胶州湾SYN丰度范围在0.02×103~61.80×103cells/mL之间,丰度在夏季最高。獐子岛海域PEUK丰度范围在0.01×103~18.76×103cells/mL之间,丰度在秋季最高;胶州湾PEUK丰度范围在0.25×103~95.57×103 cells/mL之间,丰度在春季最高。獐子岛海域微微型浮游植物丰度组成以SYN为主;而胶州湾以PEUK为主。PEUK是两海区微微型浮游植物生物量的主要贡献者。相关性分析结果表明,温度是影响两海区SYN丰度季节变化的最主要因素;影响PEUK季节分布的因素不完全一致,獐子岛海域PEUK丰度主要受温度调控;胶州湾PEUK丰度主要受温度和营养盐浓度影响。与已有研究比较,这两个海区的微微型浮游植物生物量对浮游植物生物量的贡献明显高于其他温带沿岸海域,预示微微型浮游植物在獐子岛海域和胶州湾生态系统中的重要作用,值得进一步深入研究。  相似文献   

5.
河北沿岸微微型浮游植物的分布特征   总被引:1,自引:0,他引:1  
于2006年7月~ 2007年10月间,分4个季度调查了河北省沿岸微微型浮游植物的丰度和生物量及对浮游植物总生物量的贡献.结果显示:河北近岸海域聚球藻蓝细菌丰度为4.46×103个/mL(0.79×103~ 16.19×103个/mL),生物量(以碳计,下同)为1.31 mg/m3 (0.84~17.47 mg/m3),季节分布特征为秋季>冬季>夏季>春季.微微型光合真核生物丰度为4.43×102个/mL (0.84×102~ 17.47×102个/mL),生物量为1.11mg /m3 (0.21~ 4.37 mg/m3),季节变化变现为秋季>冬季>春季>夏季.微微型浮游植物对浮游植物总生物量的贡献年平均为5.32%(1.84%~ 8.91%),春季最高,秋季最低.温度在较冷季节(冬春季)里是影响聚球藻蓝细菌生长和分布的控制因素.总之,在近岸环境里,微微型浮游植物并不占优势.  相似文献   

6.
1997年8月、1998年2~3月和1998年8月,应用荧光显微镜、14C法分别测定了台湾海峡微微型浮游植物的类群组成和生长速率,探讨了该海域原绿球藻的存在及丰度问题.结果表明,在类群的丰度组成上,该海域以含藻红素的蓝细菌(PE细胞)占优势,平均为83%~93%(航次平均范围,下同),微微型真核浮游植物(EU细胞)次之,平均为7%~11%,含藻蓝素的蓝细菌(PC细胞)最少,平均为0%~6%;在碳生物量的组成上,PE细胞仍占优势,但其贡献率降低(52%~74%),EU细胞所占比例则升高(26%~44%).台湾海峡微微型浮游植物生长速率的变异性较大(0.52~2.25d-1),这可能与其所在测站的环境异质性(如营养盐的差异等)有关.采用叶绿素估算法证实该海域存在原绿球藻,其丰度介于107~108个/dm3之间,若将此考虑在内,在类群的丰度和生物量组成上,原绿球藻占优势(1998年8月碳生物量贡献率除外,为22%),丰度贡献率为63%~99%,碳生物量贡献率为60%~94%.  相似文献   

7.
Picoplankton distribution at the boundary zone of the southern Adriatic in May 2009 on a 75 km long shelf-continental slope transect was assessed by combining epifluorescence microscopy, flow cytometry and high-performance liquid chromatography data with hydrographic observations. The picoplankton distribution was greatly influenced by the hydrographic conditions prevailing in the southern Adriatic because of the influence of the Levantine Intermediate Water (LIW) and East Adriatic Current (EAC) forcing. Heterotrophic bacteria numerically dominated the picoplankton community through the entire transect with no significant accumulation. By contrast, picophytoplankton accumulated in the 50–75 m layer, forming a pronounced deep chlorophyll maximum. Synechococcus dominated the photosynthetic picoplankton, whereas picoeukaryotes were the least abundant. The intrusion of warm LIW observed in the layer between 100 and 350 m was followed by Prochlorococcus and Synechococcus peaks (10 × 103 cells mL−1 and 90 × 103 cells mL−1, respectively), as well as by the appearance of two Synechococcus ecotypes. Most picoeukaryotes were observed at the offshore stations, where geostrophic current calculation revealed the strongest EAC influence. A strong EAC spread over the central and eastern basin created a barrier for Prochlorococcus, whereas the picoeukaryote maxima coincided with the core of the EAC, suggesting its persistence to hydrological instabilities.  相似文献   

8.
北黄海冷水团对獐子岛微微型浮游生物分布的影响   总被引:3,自引:1,他引:2  
Picoplankton distribution around the Zhangzi Island(northern Yellow Sea)was investigated by monthly observation from July 2009 to June 2010.Three picoplankton populations were discriminated by flow cytometry,namely Synechococcus,picoeukaryotes and heterotrophic prokaryotes.In summer(from July to September),the edge of the northern Yellow Sea Cold Water Mass(NYSCWM)resulting from water column stratification was observed.In the NYSCWM,picoplankton(including Synechococcus,picoeukaryotes and heterotrophic prokaryotes)distributed synchronically with extremely high abundance in the thermocline(20 m)in July and August(especially in August),whereas in the bottom zone of the NYSCWM(below 30 m),picoplankton abundance was quite low.Synechococcus,picoeukaryotes and heterotrophic prokaryotes showed similar response to the NYSCWM,indicating they had similar regulating mechanism under the influence of NYSCWM.Whereas in the non-NYSCWM,Synechococcus,picoeukaryotes and heterotrophic prokaryotes exhibited different distribution patterns,suggesting they had different controlling mechanisms.Statistical analysis indicated that temperature,nutrients(NO3–and PO43–)and ciliate were important factors in regulating picoplankton distribution.The results in this study suggested that the physical event NYSCWM,had strong influence on picoplankton distribution around the Zhangzi Island in the northern Yellow Sea.  相似文献   

9.
This two-year study investigates the possible factors that determine spatial and temporal dynamics of picoplankton (heterotrophic bacteria, autotrophic picoplankton—Synechococcus spp., Prochlorococcus, and picoeukaryotes) and nanoflagellate abundance in the subtropical Ilan Bay, Taiwan, where the inner bay is affected by freshwater run-off from the Lanyang River and the eastern outer bay by the Kuroshio Current. In the inner bay, there was more rain and freshwater discharge in 2005 than in 2004 during the warm season (>24° C, June–September). The abundance of bacteria, Synechococcus spp., Prochlorococcus, and picoeukaryotes and the percentage contributions of pigmented nanoflagellate (PNF %) were two- to eight-fold greater during this period (July in 2005) than for other sampling periods. Relatively low abundance of heterotrophic nanoflagellates (HNF) in the presence of abundant picoplankton prey suggests that top-down control determined HNF abundance in the Ilan Bay, Taiwan.  相似文献   

10.
黄海和东海是西北太平洋重要的边缘海,复杂的海洋环流和丰富的陆源物质输入共同影响着海域环境和生态系统。为了解黄、东海浮游植物群落组成、分布状况及其影响因素,本研究于2015年8—9月期间,通过流式细胞仪和形态学观察等方法,调查了该海域微型真核藻类、微微型真核藻类、聚球藻(Synechococcus)、原绿球藻(Prochlorococcus)以及浮游植物优势种的组成、丰度与分布情况,并基于浮游植物种类和丰度状况进行了聚类分析。结果表明,黄、东海浮游植物群落组成存在明显差别,黄海海域微型浮游植物丰度高于东海,而微微型浮游植物丰度低于东海,原绿球藻主要分布在东海海域。黄、东海海域浮游植物群落组成及分布状况与海域环境特征密切相关。夏季黄海海域相对封闭,受黄海冷水团控制,表层海水中高丰度的微型真核藻类主要出现在冷水团西侧边缘锋面区。东海海域受到长江冲淡水和黑潮水向岸入侵的强烈影响,在长江口邻近海域出现硅藻赤潮,而原绿球藻呈现出自外海向近岸输送的分布态势。相关结果可望为进一步探讨陆源物质输入和邻近大洋对我国近海生态系统的影响及机理提供依据。  相似文献   

11.
Measurements of the specific absorption coefficients of phytoplankton (a*ph) are currently required to estimate primary productivity at regional to global scales using satellite imagery. The variability in a*ph and phytoplankton size fraction was determined during January 2002 in the southern region of the California Current. Median values of a*ph at 440 nm and 674 nm were 0.061 and 0.028 m2 (mg Chl-a)?1 and significant variability was found between inshore and offshore stations. A decrease of a*ph is associated with increased phytoplankton abundance and larger species. The a*ph tends to be high when the photoprotector zeaxanthin is present in elevated concentrations and phytoplankton abundance lower. The nano-microphytoplankton (>5 µm) community consisted of 28 diatom and 15 dinoflagellate genera with mean abundance values of 2.8 and 1.6 × 103 cells l?1, respectively. The picophytoplankton (<5 µm) community consisted of Prochlorococcus sp. (mean 8.2 × 106 cells l?1) and Synechococcus sp. (mean 19.5 × 106 cells l?1), as well as a mixture of picoeukaryotes (mean 8.6 × 106 cells l?1). The contributions of nano-microphytoplankton and picophytoplankton to the total biomass (µg C l?1) were 46% and 54%, respectively. This study showed that picophytoplankton cells increased 2.5 times up during January 2002 compared with the previous year. It was concluded that the waning of La Niña conditions had a clear effect on the pelagic ecosystem in January 2002 and that the higher microphytoplankton abundance in the California Current was dominated by local and regional seasonal processes.  相似文献   

12.
Samples collected from 10 depths at 25 stations in September–October 1996 and 12 depths at 28 stations in April–May 1997 on an Atlantic Meridional Transect between the British Isles and the Falkland Islands were analysed by flow cytometry to determine the numbers and biomass of four categories of picoplankton: Prochlorococcus spp, Synechococcus spp, picoeukaryotic phytoplankton and heterotrophic bacteria. The composition of the picoplankton communities confirmed earlier findings (Zubkov, Sleigh, Tarran, Burkill & Leakey, 1998) about distinctive regions along the transect and indicated that the stations should be grouped into five provinces: northern temperate, northern Atlantic gyre, equatorial, southern Atlantic gyre and southern temperate, with an intrusion of upwelling water off the coast of Mauritania between the northern Atlantic gyre and equatorial waters. Prochlorococcus was the most numerous phototrophic organism in waters of both northern and southern gyres and in the equatorial region, at concentrations in excess of 0.1×106ml−1; it also dominated plant biomass in the gyres, but the biomass of the larger picoeukaryotic algae equalled that of Prochlorococcus in the equatorial region; higher standing stocks of both Prochlorococcus and picoeukaryotes were present in spring than in autumn in waters of both gyres. In temperate waters at both ends of the transect the numbers and biomass of picoeukaryotes and, more locally, of Synechococcus increased, and the Synechococcus, particularly, were more numerous in spring than in autumn. There was a pronounced southward shift of the main populations of both Synechococcus and Prochlorococcus in April–May in comparison to those of September–October, associated with seasonal changes in solar radiation, the abundance of Prochlorococcus dropping sharply near the 17°C contour, while Synechococcus was still present at temperatures below 10°C. Picoeukaryotes were more tolerant of low temperatures and lower light levels, often being more abundant in samples from greater depths, where they contributed to the deep chlorophyll maximum. Heterotrophic bacterial numbers and biomass tended to be highest in those samples where phototrophic biomass was greatest, with peaks in temperate and equatorial waters, which were shifted southwards in April–May compared with September–October.  相似文献   

13.
Climatological variability of picophytoplankton populations that consisted of >64% of total chlorophyll a concentrations was investigated in the equatorial Pacific. Flow cytometric analysis was conducted along the equator between 145°E and 160°W during three cruises in November–December 1999, January 2001, and January–February 2002. Those cruises were covering the La Niña (1999, 2001) and the pre-El Niño (2002) periods. According to the sea surface temperature (SST) and nitrate concentrations in the surface water, three regions were distinguished spatially, viz., the warm-water region with >28 °C SST and nitrate depletion (<0.1 μmol kg−1), the upwelling region with <28 °C SST and high nitrate (>4 μmol kg−1) water, and the in-between frontal zone with low nitrate (0.1–4 μmol kg−1). Picophytoplankton identified as the groups of Prochlorococcus, Synechococcus and picoeukaryotes showed a distinct spatial heterogeneity in abundance corresponding to the watermass distribution. Prochlorococcus was most abundant in the warm-water region, especially in the nitrate-depleted water with >150×103 cells ml−1, Synechococcus in the frontal zone with >15×103 cells ml−1, and picoeukaryotes in the upwelling region with >8×103 cells ml−1. The warm-water region extended eastward with eastward shift of the frontal zone and the upwelling region during the pre-El Niño period. On the contrary, these regions distributed westward during the La Niña period. These climatological fluctuations of the watermass significantly influenced the distribution of picophytoplankton populations. The most abundant area of Prochlorococcus and Synechococcus extended eastward and picoeukaryotes developed westward during the pre-El Niño period. The spatial heterogeneity of each picophytoplankton group is discussed here in association with spatial variations in nitrate supply, ambient ammonium concentration, and light field.  相似文献   

14.
Photosynthetic pigment system of picophytoplankton of cyanophytes was examined with five strains isolated from the Kuroshio water at the depth of 70 m. Examination was made for the absorption spectra of intact cells of each strain. Analysis of pigment composition was also made withSynechococcus NIBB 1059 and 1071, which were isolated from surface waters of the Gulf Stream and Kuroshio area, respectively. Results indicated that (1) all strains contain phycoerythrin with a very high concentration, and (2) the phycoerythrin in these strains contains two chromophores, phycoerythrobilin and phycourobilin, and (3) a large abundance of phycoerythrin and phycourobilin in the phycoerythrin enablesSynechococcus picophytoplankton to absorb effectively the light in the blue-green region at the subsurface depth. These characteristics suggest that cyanophytes in the subsurface water can collectt the blue-green light and perform actively photosynthesis even at the bottom of euphotic layer.  相似文献   

15.
胶州湾微微型浮游植物丰度及其与环境因子的相关性分析   总被引:1,自引:0,他引:1  
利用流式细胞仪对胶州湾微微型浮游植物4个季节的丰度分布进行了研究,并分析了微微型浮游植物与环境因子的相关性。结果表明,聚球藻的丰度在2.17×102—2.329×104个/ml之间,高值区主要分布在湾内西部和湾口海域;仅夏季、冬季丰度之间有显著性差异;夏季在垂直分布上差异显著,在B3、C4、D5连续站昼夜变化趋势基本一致,分别在13:00和3:00出现峰值。微微型真核浮游植物的丰度分布在1.028×103—8.651×104个/ml之间,主要活跃于湾内西部海域;四季丰度在垂直分布上差异不显著;春、夏季丰度明显高于秋、冬季;夏季连续站昼夜变化趋势与聚球藻基本一致。通过主成分分析表明,聚球藻和微微型真核浮游植物丰度在不同季节受不同环境因子的影响,在冬季与温度有关,温度升高,二者的丰度增高。在其它季节,二者丰度主要受营养盐等环境因子的影响。  相似文献   

16.
Shimada  A.  Nishijima  M.  Maruyama  T. 《Journal of Oceanography》1995,51(3):289-300
Seasonal appearance ofProchlorococcus was studied by flow cytometry in Suruga Bay, Japan in 1992–1993.Prochlorococcus cells were in high concentrations (>1×104 cells ml–1) from July to October 1992 and September 1993, when the water temperature was over 20°C. The 16S rRNA of the isolated cells showed 98.5% sequence homology with that ofP. marinus (Sargasso strain), indicating that they are the same species. The former has a high divinyl-chlorophyll (DV-Chl.)a/b ratio similar to the Mediterranean strain and different from the Sargasso strain. Maximum concentration ofProchlorococcus at the surface water was 2.5×104 cells ml–1 in August 1992 and their DV-Chl.a accounted for 4.0% of the total chlorophylla. A decrease in cell density to less than 5×103 cells ml–1 was observed from December to May with an exceptional rise in January 1993. WhileProchlorococcus showed a maximum concentration of 3.6×104 cells ml–1 at 10 m depth in September 1992, phycoerythrin (PE)-richSynechococcus spp. were dominant with their maximum concentration of 2.2×105 cells ml–1 in the same water body. On the other hand, phycocyanin (PC)-richSynechococcus spp. and the larger phytoplankters showed maximum concentrations in the surface waters in May and June. BothProchlorococcus and PE-richSynechococcus showed their lowest concentrations in April. A significant positive correlation was obtained between cell concentrations of the PE-richSynechococcus andProchlorococcus.  相似文献   

17.
We investigated whether trochophore larvae of the polychaete Hesiocaeca methanicola, which lives on exposed ice‐like methane hydrates between 500 and 600 m, could consume near‐bottom picoplankton. In laboratory trials larvae significantly reduced the growth rates of all types of picoplankton, including heterotrophic bacteria, Prochlorococcus sp., Synechococcus‐type cyanobacteria and phototrophic eucaryotes <3 μm. Our findings suggest that these types of plankton may be important food sources for deep‐sea planktotrophic larvae.  相似文献   

18.
Temporal and spatial variations in Synechococcus abundance were investigated over an annual cycle (February'10–January'11) along a salinity gradient (0–35) in the tropical Zuari estuary, influenced by south-west monsoons. Synechococcus exhibited salinity preferences with phycoerythrin-rich cells at salinities >2 (Synechococcus-PEI), >20 (Synechococcus-PEII) and <1 (Synechococcus-PEIII) whereas phycocyanin-rich (Synechococcus-PC) dominant at lower salinities. Downstream stratification during monsoon caused Synechococcus group segregation in the surface and near-bottom waters. During monsoon-break and non-monsoon period stabilized waters, increased salinity, temperature, solar radiation and low rainfall favored high Synechococcus abundance whereas unstable waters, increased turbidity and low solar radiation during active monsoon lowered abundance. SYN-PC positively co-related with nitrate and phosphate and SYN-PEI with phosphate. Synechococcus contribution to phytoplankton carbon biomass ranged from 9 to 29%. In monsoonal estuaries, rainfall intensity regulates freshwater runoff which modulates the estuarine environment, creating temporal–spatial niche segregation of Synechococcus groups thereby serving as indicator organisms of the estuarine hydrodynamics.  相似文献   

19.
2009年2月(冬季)和8月(夏季)在南海北部海域(nSCS)采用流式细胞术对聚球藻、原绿球藻、超微型光合真核生物3类超微型光合浮游生物和异养浮游细菌的丰度和碳生物量的时空分布特征进行了研究,并分析了其与环境因子之间的关系。结果表明,夏季聚球藻和原绿球藻的平均丰度高于冬季,超微型光合真核生物和异养浮游细菌的丰度反之,为冬季高于夏季。聚球藻、超微型光合真核生物和异养浮游细菌在富营养的近岸陆架海域丰度较高,而原绿球藻高丰度则出现在陆坡开阔海域。在垂直分布上,聚球藻主要分布在跃层以上,跃层以下丰度迅速降低;原绿球藻高丰度主要出现在真光层底部;超微型光合真核生物在水层中的高值同样出现在真光层底部,且与Pico级份叶绿素a浓度分布一致;异养浮游细菌在水体中的分布与聚球藻类似。这些分布格局的差异,取决于环境条件的变化和4类超微型浮游生物生态生理适应性的差异。在超微型光合浮游生物群落中,各类群碳生物量的贡献因季节和海域类型的不同而发生变化:聚球藻在夏季近岸陆架区占超微型光合浮游生物总碳生物量的41%,原绿球藻在陆坡开阔海成为主要贡献者(50%),超微型光合真核生物碳生物量以冬季为高(在近岸陆架区占比68%)。冬、夏季异养浮游细菌碳生物量均高于超微型光合浮游生物碳生物量。  相似文献   

20.
Using a flow cytometer (FCM) onboard the R/V Xuelong during the 24th Chinese Antarctic cruise, picoplankton community structure and biomass in the surface water were examined along the latitude and around the Antarctic Ocean. Salinity and temperature were automatically recorded and total Chla was determined. Along the cruise, the abundance of Synechococcus, Prochlorococcus, pico-eukaryotes and heterotrophic bacteria ranged in 0.001-1.855×108 ind./L, 0.000-2.778£108 ind./L, 0.002-1.060×108 ind./L and 0.132-27.073×108 ind./L, respectively. Major oceanic distribution of Synechococcus and Prochlorococcus appeared between latitudes 30°N and 30°S. Prochlorococcus was mainly influenced by water temperature, water mass combination and freshwater inflow. Meanwhile, Synechococcus distribution was significantly associated with landing freshwater inflow. Pico-eukaryotes and heterotrophic bacteria were distributed all over the oceans, but with a relatively low abundance in the high latitudes of the Antarctic Ocean. Principal Component Analysis showed that at same latitude of Atlantic Ocean and Indian Ocean, picoplankton distribution and constitution were totally different, geographical location and different water masses combination would be main reasons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号