首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 71 毫秒
1.
利用1998-2000年3a的GMST5静止气象卫星红外云图资料和北疆地面观测站6h降水资料,对北疆地区出现的275次云系进行分类,探讨了各类云系的生命史,出现频率,给出云型和TBB与北疆地区降水之间的关系。  相似文献   

2.
应用静止气象卫星GMS-5的红外云图及其数字化资料对1998-2001年4-9月、2002年4月乌鲁木齐地区99场小量、8场中量、25场大量、11场暴量降水过程进行了分析,总结出造成乌鲁木齐地区降水的主要云系特征与路径分型,云系与天气系统配置关系、相应降水情况的概念模式以及在实际业务中应用静止气象卫星云图及其数字化资料制作降水预报应注意的问题。  相似文献   

3.
飞机人工增雨催化作业云系结构特征分析   总被引:1,自引:0,他引:1  
利用GMS-5卫星云图资料,配合雷达,探空、M-LDARS闪电定位探测系统观测资料及常规天气资料,对1997年3月13日飞机人工增雨催化作业云的宏观结构特征及其演变规律作了综合分析。结果表明,卫星云图上逼点云系的主要降水云是以片絮状回波结构为主的层状云降水区,云内含水量充沛,适合于飞机人工增雨作业。在云系东侧边及尾部,不断生成有中尺度对流回波系统,不仅造成了局地较强降水,而且产生了雷暴天气。  相似文献   

4.
孙月环  成坤 《吉林气象》2015,(1):14-17,48
应用FY2E卫星云图和配合云顶亮度温度,结合天气图、地面实况资料,对2012年5月13-16日一次东北冷涡形成、发展及消亡的过程进行分析。通过6.7μm水汽云图和红外云图分析冷涡能量释放过程中,降水和雷暴分布特征,并且试图建立降水和雷暴落区预报依据。结果表明:本次过程在FY-2C卫星云图、大尺度环流形势场对冷涡反映都很敏感,冷涡降水主要发生在三四象限,强雷电主要发生在"逗点"云系形成过程中即成熟阶段,冷涡消亡过程中,瓦解的碎散云系由于有冷空气的作用,也会带来阵性不均匀雷阵雨天气。TBB低值带与强降水雷暴的落区有很好的对应关系,降水的发生区往往是TBB的相对低值中心,雨带摆动及强度与TBB低值带的摆动和强度相一致。TBB≤-30℃,应注意降水的预报,TBB≤-60℃,可能出现雷暴天气。雷暴的发生发展经常出现在水汽图上高空急流左侧的暗区和亮区的过渡带,暗区对应着水汽图上的干区,能量在这一区域可以得到有效的储存,在一定的触发条件下,不稳定能量释放,强对流天气出现。  相似文献   

5.
一、前言本文利用极轨卫星NOAA-9和NOAA-10每天两次的红外与可见光云图,结合常规的天气图和其它资料,对1987年7月28日至29日,在南疆西部发生的一次降水过程的卫星云图特征进行了分析,试图从云系的形成、发展及其演变过程的角度,对塔什干低涡云系进行一些探讨. 二、过程概况 1987年7月28日至29日,南疆西部普遍发生了一次以降水为主的天气过程.过程降水量普遍为小一中量,有不少地区达到大  相似文献   

6.
辐辏状云具有宽广的云区,长条平行的分布反映了高空的流场特征,特别是辐辏状云,现在知道它是副高边缘或是南支急流云系的指示云,因而常被用作重大天气过程的征兆[1-2]。观测事实指出,出现在低空,云条延伸很长的堤状云(常称长为堤云),与大型天气过程关系密切,也是一种很好的天气指示云[1-2]。本文就我们近年来(1981-1989年)南宁的云天日记和云图拍摄资料,分析探讨辐辏状和堤状云的规律及与未来降水的关系。  相似文献   

7.
中尺度对流复合体的降水特征和预报   总被引:6,自引:2,他引:6  
利用增强红外卫星云图和逐时雨量预测资料,分析了中国大陆上中尺度对流复合体(MCC)的降水强度、范围与MCC云区的亮度温度值、不同亮温区云面积、云区面积随时间的变化率之间的关系。指出在MCC生成-云发展到最强盛阶段之前,降水呈逐渐增加的趋势,最大降水出现在-53℃、云面积达到最大之前1小时左右和MCC中心最冷云顶面积达到最大的时候。出现在长江流域和华南地区的MCC系统降水特征有显著的差异。最后根据MCC云系演变规律提出了MCC的降水预报思路。  相似文献   

8.
通过分析1995年9月2-7日阿克苏地区一次大降水天气的静止卫星云图资料,结合形势学变,认识到副热带大槽所形成的大积雨云团北抬,以越过青藏高原,并与北部云系结合,共同影响阿克苏地区的大降水天气。  相似文献   

9.
在分析天气雷达回波与卫星云图的基础上,利用"点对块"的匹配方式对雷达、卫星资料空间一致性进行处理,提出了基于气象卫星(Himawari-8)高时空分辨率资料的天气雷达非降水回波消除方法,并选取晴空非降水回波分布较广的华北、华中和长江中下游地区为研究范围,以地面气象观测的降水资料为标准,对降水和非降水条件下卫星资料红外亮温(TBB)特性值进行统计分析,得到TBB的概率分布,采用红外亮温阈值法进行天气雷达非降水回波的消除。选取2016年7月1—30日地面气象观测资料对该方法消除效果进行检验评估,该方法的正确识别率达88.5%。个例效果检验表明:该方法能够有效地识别消除大部分非降水回波,在基于现有天气雷达资料质量控制方法的基础上可进一步提高雷达数据质量;该方法对无云条件的非降水识别率较高,对降水回波误判率较低,但对有云条件下的非降水回波识别率较低。  相似文献   

10.
李献洲 《气象》1987,13(5):9-13
本文概括出5种飑云型及其5种云系演变型式,并绐出飑云系形成发展时天气系统配置的概念模式。尝试使用卫星云图识别和预报飑线天气,对中尺度强对流云区与天气尺度云系间的关系也进行了一些探讨。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

18.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

19.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号