首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the development of a generalized Boussinesq (gB) model for the periodic non-linear shallow-water waves. An incident cnoidal wave solution for the gB model is derived and applied to the wave simulation. A set of radiation boundary conditions is also established to transmit effectively the cnoidal waves out of the computational domain. The classical solutions of the second-order cnoidal waves are discussed within the content of the KdV equation and the generalized Boussinesq equations. An Euler's predictor-corrector finite-difference algorithm is used for numerical computation. The propagation of normally incident cnoidal waves in a channel is studied. The simulated wave profiles agree well with the analytical results. The temporal and spatial evolution of an obliquely incident cnoidal wave is also modelled. The phenomenon of Mach reflection is discussed.  相似文献   

2.
A finite element model of Boussinesq-type equations was set up, and a direct numerical method is proposed so that the full reflection boundary condition is exactly satisfied at a curved wall surface. The accuracy of the model was verified in tests. The present model was used to further examine cnoidal wave propagation and run-up around the cylinder. The results showed that the Ursell number is a nonlinear parameter that indicates the normalized profile of cnoidal waves and has a significant effect on the wave run-up. Cnoidal waves with the same Ursell number have the same normalized profile, but a difference in the relative wave height can still cause differences in the wave run-up between these waves. The maximum dimensionless run-up was predicted under various conditions. Cnoidal waves hold entirely distinct properties from Stokes waves under the influence of the water depth, and the nonlinearity of cnoidal waves enhances rather than weakens with increasing wavelength. Thus, the variations in the maximum run-up with the wavelength for cnoidal waves are completely different from those for Stokes waves, and there are even significant differences in the variation between different cnoidal waves.  相似文献   

3.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

4.
The dynamic feature of the Modaomen Estuary (ME) in the Pearl River Delta in southern China has been the subject of extensive research. In previous studies, wave–current interaction (WCI) was often neglected due to its complexity. This study uses a coupled hydrodynamic module TELEMAC-2D and wave propagation module TOMAWAC in the TELEMAC-Mascaret modeling system to quantify the effects of WCI on the hydrodynamics in the ME. The coupled wave and current modeling system was well validated against the field measurements at selected locations. The model results show that WCI varies with the seasonal change in runoff in the ME. The effect of waves on the currents is insignificant during the wet season with a current change of no more than 0.07 m/s; but, in contrast, the currents have a noticeable effect on waves. However, during the dry season, the interactions of waves and currents on each other are found to be equally significant. When wave model and current model are coupled, the velocity could increase up to a maximum of 0.30 m/s and decrease up to a maximum of 0.17 m/s. WCI is greatly affected by the propagation directions of wave and current in both seasons. Generally, wave height decreases and current increases for a following wave and current; wave height increases and current decreases for an opposing wave and current. The effects of waves on currents change with the tide. Changes are larger during neap tide than during spring tide, and stronger during ebb tide than during flood tide.  相似文献   

5.
To investigate higher harmonics induced by a submerged obstacle in the presence of uniform current, a 2D fully nonlinear numerical wave flume(NWF) is developed by use of a time-domain higher-order boundary element method(HOBEM) based on potential flow theory. A four-point method is developed to decompose higher bound and free harmonic waves propagating upstream and downstream around the obstacle. The model predictions are in good agreement with the experimental data for free harmonics induced by a submerged horizontal cylinder in the absence of currents. This serves as a benchmark to reveal the current effects on higher harmonic waves. The peak value of non-dimensional second free harmonic amplitude is shifted upstream for the opposing current relative to that for zero current with the variation of current-free incident wave amplitude, and it is vice versa for the following current. The second-order analysis shows a resonant behavior which is related to the ratio of the cylinder diameter to the second bound mode wavelength over the cylinder. The second-order resonant position slightly downshifted for the opposing current and upshifted for the following current.  相似文献   

6.
通过波浪水槽实验,对海平面变化造成的波浪动力因素改变引起的沙质岸滩形态响应开展机理性研究。实验采用1∶10单一沙质斜坡概化岸滩,利用3种不同实验水深模拟海平面变化,考虑椭圆余弦波、非规则波、规则波和孤立波4种类型波浪作用。实验对波浪在斜坡上的传播变形、破碎、上爬和回落过程的波高及波浪作用后的岸滩地形进行了测量。实验结果表明,椭圆余弦波、规则波和非规则波作用下,平衡岸滩呈现出滩肩形态,孤立波作用下则呈沙坝形态。海平面上升造成波浪动力增强,沙质岸滩平衡剖面形状基本保持不变向岸平移,槽谷、滩肩、沙坝位置以及岸线蚀退距离,均呈现出良好规律性。  相似文献   

7.
Numerical analyses for the Bragg resonant reflection of carrier waves associated long waves due to sinusoidally varying seabeds are performed by using a set of coupled ordinary differential equations derived from the Boussinesq equations. The Boussinesq equations are firstly approximated with the Fourier decomposition. The coupled governing equations are then derived and used to simulate evolution of both short and long wave components. It is also found that wave groups are generated by two carrier waves with slightly different frequencies. The wave energy of the initial wave components is transferred to other harmonic components during propagation over a long distance. Evolution and reflection of both short and long waves were largely affected by nonlinearity.  相似文献   

8.
An Extended Mild-Slope Equation   总被引:1,自引:0,他引:1  
On the assumption that the vortex and the vertical velocity component of the current aresmall,a mild-slope equation for wave propagation on non-uniform flows is deduced from the basichydrodynamic equations,with the terms of (V_hh)~2 and (V_h~2)h included in the equation.The terms of bot-tom friction,wind energy input and wave nonlinearity are also introduced into the equation.The wind en-ergy input functions for wind waves and swells are separately considered by adopting Wen′s(1989)empiri-cal formula for wind waves and Snyder′s observation results for swells.Thus,an extended mild-slope equa-tion is obtained,in which the effects of refraction,diffraction,reflection,current,bottom friction,wind en-ergy input and wave nonlinearity are considered synthetically.  相似文献   

9.
The analytical study is made by using the method of matched asymptotic expansions on the transmission and reflection of solitary waves and cnoidal waves on two-dimensional floating bodies. The solutions give explicitly the variation pattern of the transmitted waves and the characteristics of the reflected waves, including the wave profile, amplitude, phase shift and evolution. The effects of the gap between the body and the sea bottom on the transmission and reflection of those waves are also discussed.  相似文献   

10.
基于FLUENT软件建立数值波浪水槽,研究椭圆余弦内波及其对墩柱的作用。椭圆余弦内波的生成采用推板造波方法,自由面捕获采用VOF方法。首先,模拟了椭圆余弦内波的生成,比较了不同周期和波高下椭圆余弦内波的波浪形态。然后,在特定的周期和波高条件下模拟了三维椭圆余弦内波对单个墩柱及多个敦柱的作用;分析了各墩柱上受到的惯性力和粘性力的变化趋势,并对不同墩柱下的总波浪力进行了对比;得出了墩柱上受到的波浪力也呈现周期性变化并且在波浪前进方向上后墩柱的受力小于靠前墩柱的结论。  相似文献   

11.
In the present study,a numerical wave tank is developed to simulate the nonlinear wave-current interactions based on High Order Spectral(HOS) method.The influences of current on wave focusing are investigated by use of numerical model.The current is assumed to be constant in space.Focused waves with different amplitudes and frequency spectra are simulated with and without current.The focused wave characteristics,such as surface elevation,the maximum crest and frequency spectrum,with different current are compared.The results show that the opposing current increases the maximum crest and the energy transform during wave focusing process,and vice versa for the following current.  相似文献   

12.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

13.
The interaction of diagonal waves with perforated-wall breakwater partially filled with rock fill is studied using the linear potential theory. By means of the matched eigenfunction expansion method, an analytical method is presented to calculate the reflection coefficient and the wave force coefficient of the breakwater. The calculated results of the reflection coefficient for limiting cases are the same to the existing results. The main effect factors of the reflection coefficient and the wave force coefficient are analyzed by numerical examples. With the increasing of thickness of rock fill, the wave force coefficient on the perforated wall generally decreases, while the reflection coefficient increases. With the increasing of the incident angle of the wave, the reflection coefficient of the breakwater first decreases, reaches its minimum, and then increases monotonously.  相似文献   

14.
刘洪杰  刘勇  李玉成 《海洋学报》2009,31(4):159-166
基于线性势流理论,对斜向波与消浪室内带部分填料的开孔板式防波堤结构的相互作用进行了理论研究.利用匹配特征函数展开法给出了开孔防波堤结构反射系数和波浪力系数的理论计算方法,在极限情况下的计算结果与已有结果一致.利用数值算例分析了开孔结构反射系数和波浪力系数的主要影响因素.增加消浪室内填料厚度通常可以降低开孔墙结构的波浪力系数,加大结构的反射系数.随着波浪入射角度的增加,带填料防波堤结构的反射系数值先减小,达到最小值后又单调增加.  相似文献   

15.
16.
A Numerical Model for Nonlinear Wave Propagation on Non-uniform Current   总被引:3,自引:0,他引:3  
On the basis of the new type Boussinesq equations (Madsen et al.,2002),a set of equations explicitly including the effects of currents on waves are derived.A numerical implementation of the present equations in one dimension is described.The numerical model is tested for wave propagation in a wave flume of uniform depth with current present.The present numerical results are compared with those of other researchers.It is validated that the present numerical model can reasonably reflect the nonlinear influences of currents on waves.Moreover,the effects of inputting different incident boundary conditions on the calculated results are studied.  相似文献   

17.
Ning et al. (2015) developed a 2D fully nonlinear potential model to investigate the interaction between focused waves and uniform currents. The effects of uniform current on focusing wave crest, focal time and focal position were given. As its extension, harmonic energy transfer for focused waves in uniform current is studied using the proposed model by Ning et al. (2015) and Fast Fourier Transformation (FFT) technique in this study. It shows that the strong opposing currents, inducing partial wave blocking and reducing the extreme wave crest, make the nonlinear energy transfer non-reversible in the focusing and defocusing processes. The numerical results also provide an explanation to address the shifts of focal points in consideration of the combination effects of wave nonlinearity and current.  相似文献   

18.
The volume of fluid(VOF)method is used to set up a wave flume with an absorbing wavemaker of cnoidal waves.Based on the transfer function between wave surface and paddle velocity obtained bythe shallow water wave theory,the velocity boundary condition of an absorbing wave maker is introduced toabsorb reflected waves that reach the numerical wave maker.For H/d ranging from 0.1 to 0.59 and T(g/d)~(1/2)from 7.9 to 18.3,the parametric studies have been carried out and compared with experiments.  相似文献   

19.
《Coastal Engineering》2001,42(2):155-162
It is studied whether the mass transport or energy transport is the proper viewpoint for internally generating waves in the extended Boussinesq equations of Nwogu [J. Waterw., Port, Coastal Ocean Eng. 119 (1993) 618–638]. Numerical solutions of the Boussinesq equations with the internal generation of sinusoidal waves show that the energy transport approach yields the required wave amplitude properly while the mass transport approach yields wave amplitude different from the required one by the ratio of phase velocity to energy velocity. The waves which pass through the wave generation point do not cause any numerical distortion while the incident waves are generated. The technique of internal generation of waves shows its capability of generating nonlinear cnoidal waves as well as linear sinusoidal waves.  相似文献   

20.
A nonlinear numerical model based on depth averaged equations and a relevant physical model have been investigated for the deformation of the water wave propagating over a submerged parabolic obstacle in the presence of uniform current. Physical and numerical modeling for wave with both following and opposing currents are done to explore the wave evolutions during passage over the submerged obstacle. A third-order Stokes dispersion relation is utilized in some cases in the computation. Separated flow zone is taken into consideration by two empirical equations obtained from the physical model testing done by the authors. Verification and validation of the numerical model by other published theoretical and experimental data are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号