首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Several methods were evaluated and compared for the estimation of pyrite oxidation rates (POR) in waste rock at Mine Doyon, Quebec, Canada. Methods based on data collected in situ, such as the interpretation of temperature and oxygen concentration profiles (TOP) measured in the waste rock pile and pyrite mass balance (PMB) on solid phase samples were compared with the oxygen consumption measurements (OCM) in closed chamber in the laboratory. A 1-D analytical solution to a gas and heat transport equation used temperature and oxygen profiles (TOP) measured in the pile for the preliminary POR estimates at a site close to the slope of the pile (Site 6) and in the core of the pile (Site 7). Resulting POR values were 1.1 × 10− 9 mol(O2) kg− 1 s− 1 and 1.0 × 10− 10 mol(O2) kg− 1 s− 1 for the slope site and the core site, respectively. Oxidation rates based on pyrite mass balance (PMB) calculations for solid samples were 2.21 × 10− 9 mol(O2) kg− 1 s− 1 and 2.03 × 10− 9 mol(O2) kg− 1 s− 1, respectively, for the same slope and core sites, but the difference between sites was within the error margin. The OCM measurements in the laboratory on fresh waste rock samples yielded higher POR values than field methods, with average oxidation rate of 6.7 × 10− 8 mol(O2) kg− 1 s− 1. However, the OCM results on weathered and decomposed material from the rock stockpile (average oxidation rate 3.4 × 10− 9 mol(O2) kg− 1 s− 1) were consistent with results from the field-based estimates. When POR values based on fresh material are excluded, the remaining POR values for all methods range from 1.0 × 10− 10 to 3.4 × 10− 9 mol(O2) kg− 1 s− 1. The lowest estimated value (1.0 × 10− 10 mol(O2) kg− 1 s− 1) was based on TOP estimates in the interior of the pile where oxygen transport was limited by diffusion from the surface. These results suggest that small-scale OCM laboratory experiments may provide relatively representative values of POR in the zones of waste rock piles in which oxygen transport is not dominated by diffusion.  相似文献   

2.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   

3.
A novel one-step hydrothermal synthesis of 11 Å tobermorite, a cation exchanger, from a unique combination of waste materials is reported. 11 Å tobermorite was prepared from stoicheiometric quantities of cement bypass dust and waste container glass at 100 °C in water. The product also comprised 10 wt.% calcite and trace quartz as residual parent phases from the cement bypass dust. In a batch sorption study at 20 °C the uptakes of Cd2+ and Pb2+ by the waste-derived tobermorite product were found to be 171 mg g− 1 and 467 mg g− 1, respectively, and in both cases the removal process could be described using a simple pseudo-second-order rate model (k2 = 2.30 × 10− 5 g mg− 1 min− 1 and 5.09 × 10− 5 g mg− 1 min− 1, respectively). The sorption characteristics of the 11 Å tobermorite are compared with those of other waste-derived sorbents and potential applications are discussed.  相似文献   

4.
Water injection experiments were performed in 1997, 2000 and 2003 at the 1800 m borehole near the fracture zone of the 1995 Hyogo-ken Nanbu earthquake. During these experiments, a contraction of about 10− 8–10− 7 was observed with three-component strainmeters at a bottom of the 800 m borehole, 70 m southwest of the 1800 m borehole. We estimated hydraulic properties of the fracture zone near the Nojima fault by using the strain data to investigate a healing of the fault during the postseismic stage. We calculated pore pressure changes due to the water injection using Darcy's equation and obtained strain changes due to the pore pressure changes as elastic deformations of the crust. The calculated strain changes have a nearly agreement with the observed strain changes. Hydraulic conductivity in 1997, 2000 and 2003 was determined to be 0.9 ± 0.2 × 10− 6, 0.8 ± 0.2 × 10− 6 and 0.4 ± 0.1 × 10− 6 m/s, respectively. The reduced hydraulic conductivities in 2000 and 2003 suggest that the fractures had been healing.  相似文献   

5.
Cinnabar (α-HgS) and metacinnabar (β-HgS) dissolved at environmentally significant rates in oxygenated slurry experiments simulating a low-flow fluvial system. Based on SO42− production, cinnabar dissolution rates were 2.64 to 6.16 μmol (SO42−) m− 2 day− 1, and metacinnabar dissolution rates were 1.20 to 1.90 μmol (SO42−) m− 2 day− 1. Monodentate-bound thiosulfate (S2O32−) was identified as an oxidation product on the HgS surface by ATR-IR spectroscopy based on strong infrared absorption bands in the 1140–1145 cm− 1 and 1006–1014 cm− 1 regions. The presence of sulfide oxidation intermediates on the HgS surface indicates that SO42− concentration underestimates α-HgS and β-HgS dissolution in this setting. Mercury release rates during dissolution were more than two orders of magnitude less than SO42− production, but were significant: 0.47 mg (Hg) m− 2 y− 1 from cinnabar [6.45 nmol (Hg) m− 2 day− 1], and 0.17 mg (Hg) m− 2 y− 1 from metacinnabar [2.29 nmol (Hg) m− 2 day− 1]. The Hg mobilized during α-HgS and β-HgS dissolution is sufficient to form natural Au–Hg amalgam in downstream placer settings. The proportion of mercury that is not remobilized during α-HgS and β-HgS dissolution likely adsorbs to the dissolving mercuric sulfide. Adsorption of Hg2+ to cinnabar was detected in situ by anodic stripping voltammetry using a cinnabar-modified carbon paste electrode following accumulation of Hg2+ on the electrode at open circuit potential.  相似文献   

6.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

7.
The Changkeng Au and Fuwang Ag deposits represent an economically significant and distinct member of the Au–Ag deposit association in China. The two deposits are immediately adjacent, but the Au and Ag orebodies separated from each other. Ores in the Au deposit, located at the upper stratigraphic section and in the southern parts of the orefield, contain low Ag contents (< 11 ppm); the Ag orebodies, in the lower stratigraphic section, are Au-poor (< 0.2 ppm). Changkeng is hosted in brecciated cherts and jasperoidal quartz and is characterized by disseminated ore minerals. Fuwang, hosted in the Lower Carboniferous Zimenqiao group bioclastic limestone, has vein and veinlet mineralization associated with alteration comprised of quartz, carbonate, sericite, and sulfides. Homogenization temperatures of fluid inclusions from quartz veinlets in the Changkeng and Fuwang deposits are in the range of 210 ± 80 °C and 230 ± 50 °C, respectively. Salinities of fluid inclusions from the two deposits range from 1.6 to 7.3 wt.% and 1.6 to 2.6 wt.% equiv. NaCl, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions from the Changkeng deposit range from − 80‰ to − 30‰, − 7.8‰ to − 3.0‰, − 16.6‰ to − 17.0‰ and 0.0100 to 0.0054 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of fluid inclusions from the Fuwang deposit range from − 59‰ to − 45‰, − 0.9‰ to 4.1‰, − 6.7‰ to − 0.6‰ and 0.5930 to 0.8357 Ra, respectively. The δDH2O, δ18OH2O, δ13CCO2 and 3He/4He values of the fluid inclusions suggest the ore fluids of the Changkeng Au-ore come from the meteoric water and the ore fluids of the Fuwang Ag-ore are derived from mixing of magmatic water and meteoric water. The two deposits also show different Pb-isotopic signatures. The Changkeng deposit has Pb isotope ratios (206Pb/204Pb: 18.580 to 19.251, 207Pb/204Pb: 15.672 to 15.801, 208Pb/204Pb: 38.700 to 39.104) similar to those (206Pb/204Pb: 18.578 to 19.433, 207Pb/204Pb: 15.640 to 15.775, 208Pb/204Pb: 38.925 to 39.920) of its host rocks and different from those (206Pb/204Pb: 18.820 to 18.891, 207Pb/204Pb: 15.848 to 15.914, 208Pb/204Pb: 39.579 to 39.786) of the Fuwang deposit. The different signatures indicate different sources of ore-forming material. Rb–Sr isochron age (68 ± 6 Ma) and 40Ar–39Ar age (64.3 ± 0.1 Ma) of the ore-related quartz veins from the Ag deposit indicate that the Fuwang deposit formed during the Cenozoic Himalayan tectonomagmatic event. Crosscutting relationships suggests that Au-ore predates Ag-ore. The adjacent Changkeng and Fuwang deposits could, however, represent a single evolved hydrothermal system. The ore fluids initially deposited Au in the brecciated siliceous rocks, and then mixing with the magmatic water resulted in Ag deposition within fracture zones in the limestone. The deposits are alternatively the product of the superposition of two different geological events. Age evidence for the Fuwang deposit, together with the Xiqiaoshan Tertiary volcanic-hosted Ag deposit in the same area, indicates that the Pacific Coastal Volcanic Belt in the South China Fold Belt has greater potential for Himalayan precious metal mineralization than previous realized.  相似文献   

8.
The adsorption of oleic acid / oleate on fluorite surface could be visualized using tapping mode of atomic force microscopy (AFM). The natural fluorite crystals were equilibrated with 10− 3 to 10− 7 M oleate solutions and their AFM images at each concentration along with height profiles were recorded. Even at low oleate concentration of 1 × 10− 7 M, concomitant monolayer and bilayer structures were observed. It suggests that normal–normal bonding of hydrocarbon chains takes place before the surface is completely covered by the monolayer. Multi-layer adsorption of oleate was observed at oleate concentrations of above 10− 4 M. The tapping mode AFM can be utilized to visualize the topography of surfaces adsorbed with surfactant molecules.  相似文献   

9.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   

10.
Aggregates composed of olivine and magnesiowüstite have been deformed to large strains at high pressure and temperature to investigate stress and strain partitioning, phase segregation and possible localization of deformation in a polyphase material. Samples with 20 vol.% of natural olivine and 80 vol.% of (Mg0.7Fe0.3)O were synthesized and deformed in a gas-medium torsion apparatus at temperatures of 1127 °C and 1250 °C, a confining pressure of 300 MPa and constant angular displacement rates equivalent to constant shear strain rates of 1–3.3 × 10− 4 s− 1. The samples deformed homogeneously to total shear strains of up to γ  15. During constant strain rate measurements the flow stress remained approximately stable at 1250 °C while it progressively decreased after the initial yield stress at the lower temperature. Mechanical data, microstructures and textures indicate that both phases were deforming in the dislocation creep regime. The weaker component, magnesiowüstite, controlled the rheological behavior of the bulk material and accommodated most of the strain. Deformation and dynamic recrystallization lead to grain refinement and to textures that were not previously observed in pure magnesiowüstite and may have developed due to the presence of the second phase. At 1127 °C, olivine grains behaved as semi-rigid inclusions rotating in a viscous matrix. At 1250 °C, some olivine grains remained largely undeformed while deformation and recrystallization of other grains oriented for a-slip on (010) resulted in a weak foliation and a texture typical for pure dry olivine aggregates. Both a-slip and c-slip on (010) were activated in olivine even though the nominal stresses were up to 2 orders of magnitude lower than those needed to activate these slip systems in pure olivine at the same conditions.  相似文献   

11.
We have reinvestigated the mid-Cretaceous plume pulse in relation to paleo-oceanic plateaus from accretionary prisms in the circum-Pacific region, and we have correlated the Pacific superplume activity with catastrophic environmental changes since the Neoproterozoic. The Paleo-oceanic plateaus are dated at 75–150 Ma; they were generated in the Pacific superplume region and are preserved in accretionary prisms. The volcanic edifice composed of both modern and paleo-oceanic plateaus is up to 10.7 × 106 km2 in area and 19.1 × 107 km3 in volume. The degassing rate of CO2 (0.82 − 1.1 × 1018 mol/m.y.) suggests a significant impact on Cretaceous global warming. The synchronous occurrence of paleo-oceanic plateaus in accretionary complexes indicates that Pacific superplume pulse activities roughly coincided at the Permo-Triassic boundary and the Vendian–Cambrian boundary interval. The CO2 expelled by the Pacific superplume probably contributed to environmental catastrophes. The initiation of the Pacific superplume contributed to the snowball Earth event near the Vendian–Cambrian boundary; this was one of the most dramatic events in Earth's history. The scale of the Pacific superplume activity roughly corresponds to the scale of drastic environmental change.  相似文献   

12.
Ilmenite separated from beach sands of Bangladesh was oxidized for 1 h at 950 °C and then reduced in charcoal for 4 h at 1050 °C. This was followed by leaching in 5% to 15% hydrochloric acid solution in temperature range of 30 to 75 °C for periods of up to 2 h. The results were compared with those obtained by leaching of ilmenite reduced without oxidizing. Oxidation prior to reduction of the ilmenite was found to increase both the extent and the rate of leaching. The residual iron contents after leaching were also found to be lower than that obtained for non-oxidized samples. The kinetic data of leaching of ilmenite reduced after oxidation was found to follow first order reaction model, i.e., G(α) = − ln(1 − α) up to an α value of 0.5 (i.e. up to 50% reduction) and then changed to spherical model, i.e., G(α) = [1 − (1 − α)]3. On the other hand, leaching of ilmenite reduced without oxidizing was found to follow the Ginstling-Brounshtein reaction, i.e., G(α) = 1 − (2/3)α − (1 − α)2/3 throughout the leaching process. Oxidation of ilmenite prior to reduction was also found to have decreased the activation energy of leaching from 43 kJ/mol, found for samples leached after reduction without oxidizing, to 30 kJ/mol.  相似文献   

13.
The intrinsic room temperature magnetic properties of pure calcite were determined from a series of natural crystals, and they were found to be highly dependent on the chemical composition. In general, dia-, para-, and ferromagnetic components contribute to the magnetic susceptibility and the anisotropy of magnetic susceptibility (AMS). With a combination of magnetic measurements and chemical analysis these three contributions were determined and related to their mineralogical sources. The intrinsic diamagnetic susceptibility of pure calcite is − 4.46 ± 0.16 × 10− 9 m3/kg (− 12.09 ± 0.5 × 10− 6 SI) and the susceptibility difference is 4.06 ± 0.03 × 10− 10 m3/kg (1.10 ± 0.01 × 10− 6 SI). These diamagnetic properties are easily dominated by other components. The paramagnetic contribution is due to paramagnetic ions in the crystal lattice that substitute for calcium; these are mainly iron and manganese. The measured paramagnetic susceptibility agrees with the values calculated from the known concentration of paramagnetic ions in the crystals according to the Curie law of paramagnetic susceptibility. Substituted iron leads to an increase in the AMS. The paramagnetic susceptibility difference was found to correlate linearly with the iron content for concentrations between 500 and 10,000 ppm. An empirical relation was determined: (k1 − k3)para (kg/m3) = Fe-content (ppm) × (1 ± 0.1) × 10− 12 (kg/m3/ppm). The maximum susceptibility difference (Δk = k1 − k3) was found to be unaffected by iron contents below 100 ppm. Ferromagnetic contributions due to inclusions of ferromagnetic minerals can dominate the susceptibility. They were detected by acquisition of isothermal remanent magnetization (IRM) and their contribution to the AMS was separated by high-field measurements.  相似文献   

14.
Study on the kinetics of iron oxide leaching by oxalic acid   总被引:2,自引:0,他引:2  
The presence of iron oxides in clay or silica raw materials is detrimental to the manufacturing of high quality ceramics. Although iron has been traditionally removed by physical mineral processing, acid washing has been tested as it is more effective, especially for extremely low iron (of less than 0.1% w/w). However, inorganic acids such as sulphuric or hydrochloric acids easily contaminate the clay products with SO42− and Cl, and therefore should be avoided as much as possible. On the other hand, if oxalic acid is used, any acid left behind will be destroyed during the firing of the ceramic products. The characteristics of dissolution of iron oxides were therefore investigated in this study.The dissolution of iron oxides in oxalic acid was found to be very slow at temperatures within the range 25–60 °C, but its rate increases rapidly above 90 °C. The dissolution rate also increases with increasing oxalate concentration at the constant pH values set within the optimum range of pH2.5–3.0. At this optimum pH, the dissolution of fine pure hematite (Fe2O3) (105–140 μm) follows a diffusion-controlled shrinking core model. The rate expression expressed as 1 − (2 / 3)x − (1 − x)2 / 3 where x is a fraction of iron dissolution was found to be proportional to [oxalate]1.5.The addition of magnetite to the leach liquor at 10% w/w hematite was found to enhance the dissolution rate dramatically. Such addition of magnetite allows coarser hematite in the range 0.5–1.4 mm to be leached at a reasonable rate.  相似文献   

15.
The recovery of magnesium from magnesite tailings in aqueous hydrochloric acid solutions by acid leaching was studied in a batch reactor using hydrochloric acid solutions. Subsequent, production of magnesium chloride hexahydrate (MgCl2.6H2O) from leaching solution was also investigated. The effects of temperature, acid concentration, solid-to-liquid ratio, particle size and stirring speed on the leaching process were investigated. The pseudo-second-order reaction model seemed to be appropriate for the magnesium leaching. The activation energy of the leaching process was estimated to be 62.4 kJ mol− 1. Finally, MgCl2.6H2O in a purity of 91% was produced by evaporation of leaching solution obtained at a temperature of 40 °C, 1.0 M acid, solid-to-liquid ratio of 10 g/L, particle size of 100 µm, stirring speed of 1250 rpm and leaching time of 60 min.  相似文献   

16.
Carbonic fluid inclusions were observed in quartz-bearing veins at the Proterozoic Bidjovagge AuCu deposit within the Kautokeino greenstone belt in Norway, where mineralization occurred in oxidation zones of graphitic schists. A primary fluid inclusion zonation was observed with C02-rich fluid inclusions in the structural footwall of the deposit, and CH4-rich inclusions within the ore zone in the oxidation zone. Microthermometry of the primary hydrocarbon inclusions revealed 2 groups; (1) a group which homogenized between −125°C and the critical temperature of CH4 (−82.1°C), which indicated the presence of pure CH4, and (2) a group which homogenized between the critical temperature of CH4 and −42°C, which indicated the presence CH4 and higher hydrocarbons (HHC). Raman microprobe analyses of the first group confirmed the presence of CH4. The second inclusion group were fluorescent, and Raman spectra clearly displayed CH4,C2H6, and rarer C3H8 peaks. A typical feature of the Raman spectra were elevated baselines at the hydrocarbon peaks. Carbon peaks were also usually detected in each inclusion by Raman analysis. Bulk gas chromatography analyses of samples containing the first group (CH4) indicated the presence of CH4 and low concentrations of C2H6 and C3H8. Gas chromatography analyses of samples containing the second group (CH4 and higher hydrocarbons) confirmed the presence of CH4, and higher hydrocarbons such as C2H6 and C3H8 and also butanes. Based on the spacial zonation of hydrocarbons and the estimated PT conditions of 300 to 375°C and 2 to 4 kbars, the authors suggest an abiotic origin for the hydrocarbons. It is suggested that the hydrothermal fluids oxidized the graphitic schist, precipitated Cu and Au and formed light gas hydrocarbons.  相似文献   

17.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

18.
The electron backscattering diffraction technique (EBSD) was used to analyze bulging recrystallization microstructures from naturally and experimentally deformed quartz aggregates, both of which are characterized by porphyroclasts with finely serrated grain boundaries and grain boundary bulges set in a matrix of very fine recrystallized grains. For the Tonale mylonites we investigated, a temperature range of 300–380 °C, 0.25 GPa confining pressure, a flow stress range of ~ 0.1–0.2 GPa, and a strain rate of ~ 10− 13 s− 1 were estimated. Experimental samples of Black Hills quartzite were analyzed, which had been deformed in axial compression at 700 °C, 1.2–1.5 GPa confining pressure, a flow stress of ~ 0.3–0.4 GPa, a strain rate of ~ 10− 6 s− 1, and to 44% to 73% axial shortening. Using orientation imaging we investigated the dynamic recrystallization microstructures and discuss which processes may contribute to their development. Our results suggest that several deformation processes are important for the dismantling of the porphyroclasts and the formation of recrystallized grains. Grain boundary bulges are not only formed by local grain boundary migration, but they also display a lattice misorientation indicative of subgrain rotation. Dynamic recrystallization affects especially the rims of host porphyroclasts with a hard orientation, i.e. with an orientation unsuitable for easy basal slip. In addition, Dauphiné twins within porphyroclasts are preferred sites for recrystallization. We interpret large misorientation angles in the experimental samples, which increase with increasing strain, as formed by the activity of fluid-assisted grain boundary sliding.  相似文献   

19.
Reactions of CO2 with carbonate and silicate minerals in continental sediments and upper part of the crystalline crust produce HCO3 in river and ground waters. H2SO4 formed by the oxidation of pyrite and reacting with carbonates may produce CO2 or HCO3. The ratio, ψ, of atmospheric or soil CO2 consumed in weathering to HCO3 produced depends on the mix of CO2 and H2SO4, and the proportions of the carbonates and silicates in the source rock. An average sediment has a CO2 uptake potential of ψ = 0.61. The potential increases by inclusion of the crystalline crust in the weathering source rock. A mineral dissolution model for an average river gives ψ = 0.68 to 0.72 that is within the range of ψ = 0.63 to 0.75, reported by other investigators using other methods. These results translate into the CO2 weathering flux of 20 to 24 × 1012mol/yr.  相似文献   

20.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号