首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
浙江热带气旋登陆前移动速度变化分析   总被引:1,自引:1,他引:0  
利用1949~2004年登陆浙江的35个热带气旋的资料,计算了热带气旋登陆前24h和6h的速度和移速变率。结果表明,登陆浙江的热带气旋60%在登陆前移速加快,28.6%移速基本不变,11.4%移速减慢。从热带气旋登陆前的形势场、引导气流及它的结构和强度变化等方面进行分析,发现500hPa形势场的调整和引导气流的大小对热带气旋移速的变化起主导作用;热带气旋主流入通道的变化、热带气旋之间的互旋等与其移速变化有关。登陆前,热带气旋移速与其强度有一定的关系。  相似文献   

2.
热带气旋登陆地段与湛江市风雨的相关统计分析   总被引:1,自引:0,他引:1  
湛江市每年5~11月份都可受到热带气旋的影响,每个热带气旋造成风力、降水的大小,与热带气旋的登陆地段、登陆时的强度及登陆后的移动路径密切相关.本文利用50年来在广东台山至海南省南部沿海地区登陆或影响该地区的热带气旋资料与湛江市的风雨关系进行统计分析,从中找出相关规律,为热带气旋风雨预报提供参考.  相似文献   

3.
登陆热带气旋影响湖南并造成强降水的气候特征   总被引:7,自引:6,他引:1  
利用1951~2007年热带气旋、湖南降水资料,统计分析了登陆影响湖南的热带气旋时空分布,及造成的强降水特征.结果表明:57年中登陆影响湖南的热带气旋共161个,平均每年3个,主要出现在7~9月,影响热带气旋主要为台风或以上强度;影响湖南的热带气旋登陆地点以广东、福建最多,强度达强热带风暴或以上的热带气旋可造成极端暴雨降水,时间主要出现在8月.20世纪90年代以后暴雨强度呈加大趋势.  相似文献   

4.
一般认为相似路径台风的影响大致相似,但实际上相似路径台风的风雨分布尤其是暴雨分布往往有很大差异,因此,对相似路径热带气旋“海棠”(0505)和“碧利斯”(0604)暴雨成因的对比分析有助于加强台风暴雨发生机制的认识和预报。“海棠”(0505)和“碧利斯”(0604)逐日降水分布对比分析表明,两者登陆前降水分布类似,而登陆后降水分布差异比较大。利用NCEP/GFS 1 °×1 °分析资料对热带气旋登陆前后天气形势、水汽通量和水汽通量散度进行诊断分析,结果表明:“海棠”(0505)和“碧利斯”(0604)登陆前引起浙闽沿海地区大降水主要是热带气旋外围偏东气流和地形共同影响下形成。“海棠”登陆后,维持在浙江东部沿海东南风急流不断输送水汽到“海棠”倒槽内引起浙东南沿海强降水,深入内陆后,降水主要由“海棠”自身环流携带的水汽辐合引起的,降水比沿海地区明显减弱;而“碧利斯”登陆后,有明显的南海季风环流输送水汽并入热带气旋南侧环流,在其南侧形成偏南风急流,使南侧水汽输送得到明显加强,造成“碧利斯”南侧水汽通量辐合,北侧水汽通量辐散,南侧降水比北侧降水强很多;深入内陆后,“碧利斯”环流仍维持并引导北方槽后弱冷空气渗透到其西南侧,使南侧降水进一步增幅。本文还探讨了包括热带气旋外核在内区域平均垂直风切变和热带气旋强降水落区的关系,结果表明:“海棠”和“碧丽斯”大暴雨落区均对应于暴雨区区域平均垂直风切矢量左侧水汽通量散度负值区。“海棠”垂直风切变矢量平行于移动路径并指向移动路径后方是造成“海棠”强降水分布在其移动路径右侧的重要原因,“碧利斯”垂直风切变矢量平行于移动路径并指向移动路径前方是造成“碧利斯”强降水分布在其移动路径左侧的重要原因。因此,利用垂直风切结合水汽输送条件可以作热带气旋大暴雨落区预报可能是一种比较有效的方法。  相似文献   

5.
登陆广东热带气旋特征及其与副热带高压的关系   总被引:4,自引:1,他引:3  
2004年登陆广东的热带气旋只有2个,个数明显偏少,粤西无热带气旋登陆;登陆广东的初台偏迟,终台结束早,登陆时间集中于7月;热带气旋移速快,强度弱(为热带风暴),对广东影响利大于弊。对1951~2004年7~9月登陆广东的热带气旋进行统计分析,发现各月登陆广东的热带气旋次数差异较大,最多时一个月有5个,最少时没有。登陆广东的热带气旋个数与西北太平洋副热带高压位置、强度有密切关系,可以将有利于和不利于热带气旋登陆广东的副热带高压各分为3种环流形势。  相似文献   

6.
揭示热带气旋在湖南的降水规律可为热带气旋影响湖南的降水预报提供技术支撑。采用近67 a的热带气旋影响资料,通过统计方法,分析了影响湖南降水的热带气旋特点及环流异常特征。结果表明:7—9月是影响的高峰季节,以在广东、福建沿海登陆的热带气旋对湖南影响次数最多、程度最重,浙江、福建沿海登陆的热带气旋在湖南形成的降水范围最大,热带气旋对湖南影响所产生的降水主要集中在湖南省东南部,热带气旋对湖南产生的强降水范围有增大的趋势,降水强度有增强的趋势。福建和广东沿海登陆对湖南影响的热带气旋的环流特征为南亚高压偏强、偏东、偏北,导致西太平洋副热带高压偏强、偏西、偏北,引导副热带高压南侧的东南气流与南海和菲律宾以东洋面的西南风气流汇合,形成季风槽,中国华南和华东沿海为东南气流,有利于热带气旋在该区域登陆影响中国。只是前者表现为南亚高压位置较后者偏北更明显,西太平洋副热带高压更偏北,季风槽更偏东,导致福建登陆对湖南影响的热带气旋在湖南大部为气旋性环流控制,湖南全省降水偏多;而广东登陆对湖南影响的热带气旋在湖南省东南部为气旋性环流控制,该区域降水偏多。  相似文献   

7.
广东近海台风路径异常的统计特征   总被引:5,自引:0,他引:5       下载免费PDF全文
对1949~2000年的52年间在广东沿海近岸转折或沿海岸移动的热带气旋异常路径进行了统计分析,同时还研究了广东沿海的地形特征。结果发现,转折点 (或靠岸点) 主要集中在有明显山脉地形的区域,同时靠岸前热带气旋有移速减慢的特征。另外还发现,转折前强度越强,则转折点离岸越近;靠岸前平均移速越小,则转折角度越大;靠岸前强度越强,则其沿海岸移动所需入射角越小。  相似文献   

8.
普查了1971--2008年影响青田的热带气旋个例,并按不同登陆地点和移动路径进行分类统计,分别对青田县热带气旋降水的时空分布特征进行统计分析。结果表明,38a中影响青田的热带气旋年均1.7个;8月分影响频数最高,平均过程雨量最大;平均过程雨量空间分布特征为东部多于西部,南部多于北部,本县东南部为热带气旋暴雨中心。通过分析,初步了解不同路径热带气旋降水的分布特征,为今后的热带气旋降水预报服务提供参考依据。  相似文献   

9.
利用1981-2018年中国气象局上海台风研究所热带气旋最佳路径资料和国家基本气象站逐日降水资料,对登陆广东北上路径热带气旋活动及强降水特征进行统计分析.结果表明北上热带气旋从登陆时到登陆后48 h是陆地强降水产生的集中时段,登陆时24 h是陆地大暴雨最集中的时段.强降水从沿海向内陆逐渐减少,一般登陆后热带气旋持续时间...  相似文献   

10.
1996~2006年韶关热带气旋暴雨统计分析   总被引:8,自引:6,他引:2  
对1996~2006年11年来登陆华南沿海的热带气旋对韶关市造成的降水进行了统计分析,发现登陆华南沿海的热带气旋中有40%会造成韶关市大到暴雨以上降水,其中珠江口以东至福建登陆的热带气旋对韶关市的影响比珠江口以西登陆的大.韶关市的热带气旋暴雨主要分为3种类型:①热带气旋和西风槽及弱冷空气的共同作用;②热带气旋与西南季风的结合;③热带气旋环流及其倒槽的直接影响.经过统计分析可知,热带气旋与中尺度天气系统相结合是造成韶关市暴雨以上降水的主要原因.  相似文献   

11.
Based on observed rainfall data, this study makes a composite analysis of rainfall asymmetry in tropical cyclones(TCs) after making landfall in Guangdong province(GD) during 1998—2015. There are 3.0 TCs per year on average making landfall in GD and west of GD(WGD) has the most landfall TCs. Most of TCs make landfall in June,July, August, and September at the intensities of TY, STS, and TS. On average, there is more rainfall in the southwest quadrant of TC in CGD(center of GD), WGD, and GD as a whole, and the maximum rainfall is located in the southwest near the TC center. The mean TC rainfall in the east of GD(EGD) leans to the eastern side of TC. The TC rainfall distributions in June, July, August, and September all lean to the southwest quadrant and the maximum rainfall is located in the southwest near the TC center. The same features are found in the mean rainfall of TD, TS, STS, TY,and STY. The maximum rainfall is mainly in the downshear of vertical wind shear. Vertical wind shear is probably the dominate factor that determines asymmetric rainfall distribution of TCs in GD. Storm motion has little connection with TC rainfall asymmetry in GD.  相似文献   

12.
登陆福建的热带气旋对广东降水的影响   总被引:1,自引:21,他引:1  
刘燕  林良勋 《广东气象》2007,29(2):14-17
普查1970~2005年登陆福建省的热带气旋(TC)资料可知:(1)36年间平均每年有1.4个TC登陆福建省,其中以强热带风暴及以上级别为主;6~10月都有TC登陆福建省,7~9月尤其8月份是登陆的高峰期;登陆福建的TC具有明显的年际变化。(2)登陆福建省的TC主要集中于3种路径:偏北、偏西、西北型路径,其中偏北、偏西型路径以登陆闽中、闽南为主,而西北型路径有一半登陆闽中,登陆闽北以及闽南的几率相当。(3)偏西型路径的TC登陆后仍以偏西或西南的路径移动,一般有西南季风的配合,80%对广东有显著影响;西北型路径的TC登陆闽北时由于继续以西北或偏北路径移动且在广东上空没有强劲的西南季风的配合,则对广东基本无影响,登陆闽中南的TC登陆后移向偏西或西南,或者有强劲的西南季风的配合对广东造成显著影响的占47.8%,而减弱快同时没有西南季风配合的形势则对广东的影响不显著。  相似文献   

13.
In order to provide an operational reference for tropical cyclone precipitation forecast,this study investigates the spatial distributions of precipitation associated with landfalling tropical cyclones(TCs) affecting China using Geostationary Meteorological Satellite 5(GMS5)-TBB dataset.All named TCs formed over the western North Pacific that made direct landfall over China during the period 2001-2009 are included in this study.Based on the GMS5-TBB data,this paper reveals that in general there are four types of distribution of precipitation related to landfalling TCs affecting China.(a) the South-West Type in which there is a precipitation maximum to the southwestern quadrant of TC;(b) the Symmetrical South Type in which the rainfall is more pronounced to the south side of TC in the inner core while there is a symmetrical rainfall distribution in the outer band region;(c) the South Type,in which the rainfall maxima is more pronounced to the south of TC;and(d) the North Type,in which the rainfall maxima is more pronounced to the north of TC.Analyses of the relationship between precipitation distributions and intensity of landfalling TCs show that for intensifying TCs,both the maximum and the coverage area of the precipitation in TCs increase with the increase of TC intensity over northern Jiangsu province and southern Taiwan Strait,while decreasing over Beibu Gulf and the sea area of Changjiang River estuary.For all TCs,the center of the torrential rain in TC shifts toward the TC center as the intensity of TC increases.This finding is consistent with many previous studies.The possible influences of storm motion and vertical wind shear on the observed precipitation asymmetries are also examined.Results show that the environmental vertical wind shear is an important factor contributing to the large downshear rainfall asymmetry,especially when a TC makes landfall on the south and east China coasts.These results are also consistent with previous observational and numerical studies.  相似文献   

14.
A new synthesized index for estimating the hazard of both accumulated strong winds and heavy rainfall from a tropical cyclone (TC) is presented and applied to represent TC potential hazard over Southeast China. Its relationship with the East Asian westerly jet in the upper troposphere is also investigated. The results show that the new TC potential hazard index (PHI) is good at reflecting individual TC hazard and has significantly higher correlation with economic losses. Seasonal variation of TC-PHI shows that the largest TC-PHI on average occurs in July-August, the months when most TCs make landfall over mainland China. The spatial distribution of PHI at site shows that high PHI associated with major landfall TCs occurs along the southeast coast of China. An East Asian westerly jet index (EAWJI), which represents the meridional migration of the westerly jet, is defined based on two regions where significant correlations exist between TC landfall frequency and zonal wind at 200 hPa. Further analyses show that an anomalous easterly steering flow occurred above the tracks of TCs, and favored TCs making landfall along the southeast coast of China, leading to an increase in the landfall TC when the EAWJ was located north of its average latitude. Meanwhile, anomalous easterly wind shear and positive anomaly in low-level relative vorticity along TCs landfall-track favored TC development. In addition, anomalous water vapor transport from westerly wind in the South China Sea resulted in more condensational heating and an enhanced monsoon trough, leading to the maintenance of TC intensity for a longer time. All of these environmental factors increase the TC potential hazard in Southeast China. Furthermore, the EAWJ may affect tropical circulation by exciting meridional propagation of transient eddies. During a low EAWJI phase in July-August, anomalous transient eddy vorticity flux at 200 hPa propagates southward over the exit region of the EAWJ, resulting in eddy vorticity flux convergence and the weakening in the zonal westerly flow to the south of the EAWJ exit region, producing a favorable upper-level circulation for a TC making landfall.  相似文献   

15.
Coastal urban areas are prone to serious disasters caused by landfalling tropical cyclones(TCs). Despite the crucial role of urban forcing in precipitation, how fine-scale urban features impact landfalling TC precipitation remains poorly understood. In this study, high-resolution ensemble simulations of Typhoon Rumbia(2018), which crossed the Yangtze River Delta urban agglomeration, were conducted to analyze the potential urban impact on TC precipitation. Results show that the inner-core rainfal...  相似文献   

16.
Following previous studies of the rainfall forecast in Shenzhen owing to landfalling tropical cyclones(TCs), a nonparametric statistical scheme based on the classification of the landfalling TCs is applied to analyze and forecast the rainfall induced by landfalling TCs in the coastal area of Guangdong province, China. All the TCs landfalling with the distance less than 700 kilometers to the 8 coastal stations in Guangdong province during 1950—2013 are categorized according to their landfalling position and intensity. The daily rainfall records of all the 8 meteorological stations are obtained and analyzed. The maximum daily rainfall and the maximum 3 days' accumulated rainfall at the 8 coastal stations induced by each category of TCs during the TC landfall period(a couple of days before and after TC landfalling time) from 1950 to 2013 are computed by the percentile estimation and illustrated by boxplots. These boxplots can be used to estimate the rainfall induced by landfalling TC of the same category in the future. The statistical boxplot scheme is further coupled with the model outputs from the European Centre for Medium-Range Weather Forecasts(ECMWF) to predict the rainfall induced by landfalling TCs along the coastal area. The TCs landfalling in south China from 2014 to 2017 and the corresponding rainfall at the 8 stations area are used to evaluate the performance of these boxplots and coupled boxplots schemes. Results show that the statistical boxplots scheme and coupled boxplots scheme can perform better than ECMWF model in the operational rainfall forecast along the coastal area in south China.  相似文献   

17.
选取我国东南沿海热带气旋登陆数目多、经济发达的浙江和福建两省,利用国家级地面气象站逐小时降水观测资料,结合热带气旋降水客观分离方法,对1956~2012年(共57年)浙、闽两省沿海登陆热带气旋降水开展客观分离,统计分析热带气旋登陆期间降水精细化时空分布特征。结果表明:热带气旋平均路径在登陆前6小时至登陆后24小时呈西北行,累积降水具有明显非对称分布特征,与主要水汽辐合区相吻合,登陆后24小时至48小时的降水分布与鄱阳湖水体以及局地地形有密切联系;伴随登陆进程,降水分布呈现显著变化,登陆前,浙、闽两省降水较强;登陆后,降水范围向内陆扩展到浙、闽两省以外地区;登陆点聚类分析指出,所有类别的较强降水时段均位于登陆前12小时至登陆后6小时,但不同类别的降水分布和演变特征具有显著差异,这种差异与局地地形和热带气旋环流所处位置关系密切;小时强降水统计分析显示,伴随着登陆进程强降水频次分布逐渐变化和向内陆地区推进,高频次强降水主要出现在登陆前、后6小时的浙、闽两省沿海地区,且以两省交界附近地区最为集中,与该地区明显的高大地形分布有着密切的关系。两省各台站由登陆热带气旋带来的小时降水极值差异较大,从10到143 mm均有分布,大部分极值在30至60 mm之间。其中,极值大于50 mm的站点主要分布在沿海地区,在浙、闽交界处较为集中,与小时强降水的频次分布一致。  相似文献   

18.
The correlation and composite analysis are carried out in this paper to study major factors affecting the track of tropical cyclones (TCs) after their landfall in the east of China. The mid-tropospheric environmental steering flow is found to dominate the movement of a TC even after landfall, with the inertia and Coriolis force two other subordinates. A key region is discovered covering the east of China and Yellow Sea, in which the environmental flow significantly affects the movement of TCs making landfall in this part of China. When the subtropical high in this region strengthens and extends westward, accompanied by northward shrink of the westerly trough, the TC tends to move westward after landfall and disappear inland. However, when the subtropical high in this region weakens and shrinks eastward, accompanied by southward push of the westerly trough, the TC tends to recurve after landfall and re-enter the sea at a location to the north of the site of landfall. The environment before the landfall of a TC has little impact on its post-landfall track, which is sensitive to the environmental change 12 – 24 hours after landfall. A 6-hour lag is found between the environmental change and the movement of a TC after landfall.  相似文献   

19.
A non-parametric method is used in this study to analyze and predict short-term rainfall due to tropical cyclones(TCs) in a coastal meteorological station. All 427 TCs during 1953-2011 which made landfall along the Southeast China coast with a distance less than 700 km to a certain meteorological station- Shenzhen are analyzed and grouped according to their landfalling direction, distance and intensity. The corresponding daily rainfall records at Shenzhen Meteorological Station(SMS) during TCs landfalling period(a couple of days before and after TC landfall) are collected. The maximum daily rainfall(R-24) and maximum 3-day accumulative rainfall(R-72) records at SMS for each TC category are analyzed by a non-parametric statistical method, percentile estimation. The results are plotted by statistical boxplots, expressing in probability of precipitation. The performance of the statistical boxplots is evaluated to forecast the short-term rainfall at SMS during the TC seasons in 2012 and 2013. Results show that the boxplot scheme can be used as a valuable reference to predict the short-term rainfall at SMS due to TCs landfalling along the Southeast China coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号