首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 292 毫秒
1.
In this study, we develop a variable-grid global ocean general circulation model(OGCM) with a fine grid(1/6)°covering the area from 20°S–50°N and from 99°–150°E, and use the model to investigate the isopycnal surface circulation in the South China Sea(SCS). The simulated results show four layer structures in vertical: the surface and subsurface circulation of the SCS are characterized by the monsoon driven circulation, with basin-scaled cyclonic gyre in winter and anti-cyclonic gyre in summer. The intermediate layer circulation is opposite to the upper layer, showing anti-cyclonic gyre in winter but cyclonic gyre in summer. The circulation in the deep layer is much weaker in spring and summer, with the maximum velocity speed below 0.6 cm/s. In fall and winter, the SCS deep layer circulation shows strong east boundary current along the west coast of Philippine with the velocity speed at 1.5 m/s, which flows southward in fall and northward in winter. The results have also revealed a fourlayer vertical structure of water exchange through the Luzon Strait. The dynamics of the intermediate and deep circulation are attributed to the monsoon driving and the Luzon Strait transport forcing.  相似文献   

2.
An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.  相似文献   

3.
南海混合层近惯性能通量的时空变化   总被引:1,自引:1,他引:0  
On the basis of the QSCAT/NCEP blended wind data and simple ocean data assimilation(SODA), the wind-induced near-inertial energy flux(NIEF) in the mixed layer of the South China Sea(SCS) is estimated by a slab model, and the model results are verified by observational data near the Xisha Islands in the SCS. Then, the spatial and temporal variations of the NIEF in the SCS are analyzed. It is found that, the monthly mean NIEF exhibits obvious spatial and temporal variabilities, i.e., it is large west of Luzon Island all the year, east of the Indo-China Peninsula all the year except in spring, and in the northern SCS from May to September. The large monthly mean NIEF in the first two zones may be affected by the large local wind stress curl whilst that in the last zone is probably due to the shallow mixed layer depth. Moreover, the monthly mean NIEF is relatively large in summer and autumn due to the passage of typhoons. The spatial mean NIEF in the mixed layer of the SCS is estimated to be about 1.25 m W/m2 and the total wind energy input from wind is approximately 4.4 GW. Furthermore, the interannual variability of the spatial monthly mean NIEF and the Ni?o3.4 index are negatively correlated.  相似文献   

4.
A spatial and temporal variation in physiochemical parameters in the southeastern Yellow Sea(YS) is investigated in the spring and summer of 2009 to 2011.Nutrient show a strong negative relationship with chlorophyll a(Chl a) concentration in spring,and the subsurface chlorophyll a maxima(SCM) layer was associated with the nitracline in summer.In summer,the SCM was usually found within or above the pycnocline and at the depths of shoals from the open sea to the coastal sea due to tidal and/or topographical fronts in the southernmost study area.High Chl a concentrations were found in the central southern YS,where the YS cold water layer expanded under the pycnocline and encountered water masses during spring and summer.After a typhoon in the summer of 2011,Chl a concentration increased,especially in the central southern YS,where cold waters occurred below the pycnocline.The results suggest that the development of thermohaline fronts may play an important role in the growth and accumulation of phytoplankton biomass in the upper layer of the southeastern YS during spring and summer.  相似文献   

5.
Two field observations were conducted around the Lembeh Strait in September 2015 and 2016, respectively.Evidences indicate that seawater around the Lembeh Strait is consisted of North Pacific Tropical Water(NPTW),North Pacific Intermediate Water(NPIW), North Pacific Tropical Intermediate Water(NPTIW) and Antarctic Intermediate Water(AAIW). Around the Lembeh Strait, there exist some north-south differences in terms of water mass properties. NPTIW is only found in the southern Lembeh Strait. Water mass with the salinity of 34.6 is only detected at 200–240 m between NPTW and NPTIW in the southern Lembeh Strait, and results from the process of mixing between the saltier water transported from the South Pacific Ocean and the lighter water from the North Pacific Ocean and Sulawesi Sea. According to the analysis on mixing layer depth, it is indicated that there exists an onshore surface current in the northern Lembeh Strait and the surface current in the Lembeh Strait is southward.These dramatic differences of water masses demonstrate that the less water exchange has been occurred between the north and south of Lembeh Strait. In 2015, the positive wind stress curl covering the northern Lembeh Strait induces the shoaling of thermocline and deepening of NPIW, which show that the north-south difference of airsea system is possible of inducing north-south differences of seawater properties.  相似文献   

6.
The unbalanced submesoscale motions and their seasonality in the northern Bay of Bengal(BoB) are investigated using outputs of the high resolution regional oceanic modeling system. Submesoscale motions in the forms of filaments and eddies are present in the upper mixed layer during the whole annual cycle. Submesoscale motions show an obvious seasonality, in which they are active during the winter and spring but weak during the summer and fall. Their seasonality is associated with the mixed layer...  相似文献   

7.
Based on the observational current meter data from two mooring systems located between Chilung and the Pengjiayu Island from July 1980 to July 1981, and other oceanographic observational data in the south of the East China Sea, some problems on the flow of seawater in this area in summer are analysed in this paper. It is considered that a possible passage where the subsurface water of the Kuroshio flows into continental shelf area of the East China Sea is the lower layer of the region between Chilung and the point of 122°30′ E, 25°40′N. After passing through this passage, it flows roughly towards northeast along about 100 m isobath. The "Taiwan Warm Current" coming from the Taiwan Strait only passes through the upper layer of this area. The influence of the Taiwan Island on the flow and the eddies in this area are also discussed.  相似文献   

8.
Surface distribution and seasonal variation of alkalinity and specific alkalinity in Kuroshio area of the East ChinaSea and their application to the water mass tracing are discussed in this paper. Results show a distinct seasonal variation of the alkalinity, which is concerned with the process of vertical mixing. Different specific alkalinity in various water masses has been found. On the basis of the difference of the specific alkalinity and the distribution of alkalinity, two water fronts in summer season, located at 27°-30°N and 124°-1 27°E, (Ⅰ), and at the northern waters about one latitude from the Taiwan Island, (Ⅱ); one in winter season at about one longitude from coast of mainland of China and 26°-30°N were found. In summer season, about 1-2 longitudes eastward shift of front (Ⅰ) is found by comparison of data in May and August. And the high alkalinity of the northern East China Sea in summer season may be caused by the Huanghe River runoff flowing southward along with the Huanghai Sea  相似文献   

9.
The seasonal variabilities of a latent-heat flux (LHF), a sensible-heat flux (SHF) and net surface heat flux are examined in the northern South China Sea (NSCS), including their spatial characteristics, using the in situ data collected by ship from 2006 to 2007. The spatial distribution of LHF in the NSCS is mostly controlled by wind in summer and autumn owing to the lower vertical gradient of air humidity, but is influenced by both wind and near-surface air humidity vertical gradient in spring and winter. The largest area-averaged LHF is in autumn, with the value of 197.25 W/m 2 , followed by that in winter; the third and the forth are in summer and spring, respectively. The net heat flux is positive in spring and summer, so the NSCS absorbs heat; and the solar shortwave radiation plays the most important role in the surface heat budget. In autumn and winter, the net heat flux is negative in most of the observation region, so the NSCS loses heat; and the LHF plays the most important role in the surface heat budget. The net heating is mainly a result of the offsetting between heating due to the shortwave radiation and cooling due to the LHF and the upward (outgoing) long wave radiation, since the role of SHF is negligible. The ratio of the magnitudes of the three terms (shortwave radiation to LHF to long-wave radiation) averaged over the entire year is roughly 3:2:1, and the role of SHF is the smallest.  相似文献   

10.
According to historical mean ocean current data through the field observations of the Taiwan Ocean Research Institute during 1991–2005 and survey data of nutrients on the continental shelf of the East China Sea(ECS) in the summer of 2006, nutrient fluxes from the Taiwan Strait and Kuroshio subsurface waters are estimated using a grid interpolation method, which both are the sources of the Taiwan Warm Current. The nutrient fluxes of the two water masses are also compared. The results show that phosphate(PO4-P), silicate(SiO3-Si) and nitrate(NO3-N) fluxes to the ECS continental shelf from the Kuroshio upwelling water are slightly higher than those from the Taiwan Strait water in the summer of 2006. In contrast, owing to its lower velocity, the nutrient flux density(i.e., nutrient fluxes divided by the area of the specific section) of the Kuroshio subsurface water is lower than that of the Taiwan Strait water. In addition, the Taiwan Warm Current deep water, which is mainly constituted by the Kuroshio subsurface water, might directly reach the areas of high-frequency harmful alga blooms in the ECS.  相似文献   

11.
基于2004—2013年的南海北部开放航次数据和1980—2010年Simple Ocean Data Assimilation(SODA)数据,发现南海北部次表层水体盐度在2004—2005年间盐度显著增大,相比于气候态均值分别增加了0.1和0.14,而且温盐特征曲线显示盐度增大的现象主要发生在150m以浅。2004年净淡水通量仅略低于气候态均值,2005年净淡水通量则明显高于气候态均值,因此净淡水通量不会是导致此高盐事件的有利因素。我们进一步通过块体简化盐度收支方程,定量评估盐度收支方程里中平流输运项(包括跨海盆经吕宋海峡的平流输运项和南海海盆内部南北海盆之间的平流输运项)的贡献。发现在2004年,通过吕宋海峡进入南海北部的盐含量输运显著大于气候态均值,是导致南海北部上层水体盐度迅速增大的主要原因。为探究2005年南海北部盐度持续增强的原因,我们进一步比较2004年和2005年的平流项演变,发现相对于2004年,虽然2005年吕宋海峡盐含量输运略低于气候态均值,但南海内部南海南北海盆间(通过18°N断面进入南海北部)的盐含量输运增强,即在2005年,海盆内部经向平流盐输运的贡献是促使南海北部上层盐度继续增强的关键因素。  相似文献   

12.
1998年夏季南海水团分析   总被引:8,自引:0,他引:8  
根据 1 998年夏季“南海季风试验 ( SCSMEX)”期间所获的 CTD资料 ,使用系统聚类、Fuzzy模式聚类、Bayes判别分析和 Fuzzy分析等水团分析方法 ,对南海水体的结构和水团配置状况等进行了分析 ,划出了南海存在的 9个主要水团 ,并对各水团的温、盐度特征进行了初析。在调查期间 ,南海本地水 (南海水 )几乎控制了整个调查海区 ,而黑潮水仅出现在台湾岛的西南海域 ;海水强烈混合发生在吕宋海峡附近 ;在中南半岛以东和吕宋岛以西海域 ,表层水明显下沉 ;在南海东南部可能有来自苏禄海的海水 ,其温、盐度特征类似于吕宋海峡中的黑潮水  相似文献   

13.
A hydrographic survey and a 25-hour stationary observation were carried out in the western part of Suo-Nada in the summer of 1998 to elucidate the formation mechanism of the oxygen-deficient water mass. A steep thermocline and halocline separated the upper layer water from the bottom water over the observational area except for near the Kanmon Strait. The bottom water, in comparison with the upper layer water, indicated lower temperature, higher salinity, lower dissolved oxygen, higher turbidity, and higher chlorophyll a. Turbidity in the upper layer water changed with semi-diurnal period while the bottom water turbidity showed a quarter-diurnal variation, though the M2 tidal current prevailed in both waters. From the turbidity distribution and the current variation, it is revealed that the turbidity in the upper layer water is controlled by the advection due to the M2 tidal current. On the other hand, the quarter-diurnal variation in the bottom water turbidity is caused by the resuspension of bottom sediments due to the M2 tidal current. The steep thermocline and halocline were maintained throughout the observation period in spite of the rather strong tidal currents. This implies an active intrusion of the low temperature and high salinity water from the east to the bottom of Suo-Nada. Based on the observational results, a hypothesis on the oxygen-deficient water mass formation was proposed; the periodical turbidity variation in the bottom water quickly modifies the oxygen-rich water in the east to the oxygen-deficient bottom water in Suo-Nada in a course of circulation.  相似文献   

14.
基于中国Argo实时资料中心发布的2004年1月至2017年12月Argo全球温盐资料,运用直线定位法和隶属关系,对吕宋岛以东海域(120°~140°E,10°~30°N)水团进行分析,划分出北太平洋次表层水团(NPSSW)和北太平洋中层水团(NPIW)的分布范围。次表层水团位于50~220 m深度,分布在10°~28°N范围内,温度16.61~27.60℃,盐度34.68~35.14,核心范围春夏季较大,秋冬季较小。中层水团位于280~900 m深度,分布在10~30°N范围内,温度3.67~16.55℃,盐度34.11~34.67,核心范围季节变化较弱,整体位于18°N以北。次表层与中层水团核心温盐具有一定的年际变化特征,次表层水团与气候变化相关性较好,核心温度和盐度均存在4 a的变化周期;而中层水团与气候变化相关性较差,核心温度和盐度则分别具有3.5 a和3 a的变化周期。  相似文献   

15.
1998年春夏南海温盐结构及其变化特征   总被引:11,自引:2,他引:11  
利用1998年5~8月“南海季风试验”期间“科学1”号和“实验3”号科学考察船两个航次CTD资料,分析了1998年南海夏季风暴发前后南海主要断面的温盐结构及其变化特征.观测发现,南海腹地基本被典型的南海水团所控制,但在南海东北部尤其是吕宋海峡附近,表层和次表层水明显受到西太平洋水的影响.季风暴发以后,南海北部表面温度有显著升高,升幅由西向东递减,而南海中部和南部表面温度基本没变,这使得南海北部东西向温度梯度和整个海盆南北向温度梯度均减小.北部断面表层盐度普遍由34以上降低到34以下,混合层均有所发展,是季风暴发后降水和风力加剧的结果.观测期间黑潮水跨越吕宋海峡的迹象明显但变化剧烈.4~5月,黑潮次表层水除在吕宋海峡中北部出现外,在吕宋岛以西亦有发现,表明有部分黑潮水从吕宋海峡南端沿岸向西进而向南进入南海.6~7月,次表层高盐核在吕宋海峡中北部有极大发展,但在吕宋岛以西却明显萎缩;虽然看上去黑潮水以更强的流速进、出南海,但对南海腹地动力热力结构的影响未必更大.一个超过34.55的表层高盐水体于巴拉望附近被发现,似与通过巴拉望两侧水道入侵南海的西太平洋水有关.  相似文献   

16.
台湾海峡中、北部海域春、夏季水团分析   总被引:13,自引:2,他引:13  
本文依据1983,1984,1987,1988几年的有关资料,利用“对应分析法”对台湾海峡中、北部海域春、夏季(5—8月)的水团及有关问题进行了分析。结果表明:(1)5—8月间该海域存在两种水团分布类型,其中5月属冬季型,全海域存在浙闽沿岸水和海峡暖流水两个水团;6—8月属夏季型,全海域均为海峡暖流水盘踞,按温度不同,它又分为上层水和深层水两部分。(2)浙闽沿岸水具低温、低盐、高溶解氧特征,均一性较差,年际变异较大;海峡暖流水以高盐为主要特征,温、盐度和溶解氧分布较均匀,且诸特征相对稳定。(3)海峡东、西两侧均存在上升流现象,西侧的上升流出现于6—8月,中心在海潭岛附近;东侧的上升流7月见于澎湖群岛北方海区。(4)6—8月间,海峡暖流深层水(核心)主要沿海峡偏西一侧北上,而不是紧靠东侧径直向北。  相似文献   

17.
The complicated flow pattern in the intermediate layer of the Luzon Strait could directly affect the efficiency of the water and energy exchange between the South China Sea (SCS) and the North Pacific. Here we present a subsurface anticyclonic eddy in the Luzon Strait deduced using observations conducted in October 2005. On the basis of the hydrographic and current measurements, an anticyclonic eddy was found in the intermediate layer, i.e., about 26.8–27.3σθ, 500–900 m. It captures part of the SCS Intermediate Water outflow in the northern Luzon Strait, and carries it to flow southward and then westward back into the SCS in the southern Luzon Strait, with volume transport of about 1.9 × 106 m3 s−1. The simulated results from Hybrid Coordinate Ocean Model also suggest the existence of this anticyclonic eddy that develops and lingers for a month long.  相似文献   

18.
于2014年10月和2015年6月对珠江口、南海北部陆坡区域溶解态铝的分布进行观测,探讨影响其分布及季节差异的主要因素,并以其作为示踪因子探讨潜在的陆源物质跨陆架输送途径。研究结果显示,夏、秋季珠江口盐度为0时溶解态铝的浓度分别为690.0 nmol/L和360.0 nmol/L,在淡咸水混合初期溶解态铝迅速自水体清除,夏季的清除率(55.8%)大于秋季(29.7%)。在南海北部陆坡区域,夏季表层溶解态铝浓度表现为沿纬线方向西高东低的分布特点,秋季则相反;夏、秋季底层溶解态铝浓度均呈现出随着离岸距离增加逐渐降低的分布趋势。秋季溶解态铝浓度的分布与盐度呈现显著的负相关关系,表明其行为近乎保守,陆架混合水及黑潮次表层水等水团混合是影响南海北部陆坡区域溶解态铝分布的主要因素。并且以溶解态铝作为示踪因子发现,在21.6~22.2 kg/m^3密度面区间存在自陆架向陆坡方向的跨陆架输送。而夏季陆坡中部受到珠江冲淡水的影响出现低盐水舌,但溶解态铝的浓度相对较低,表现出明显的不保守行为。浮游植物的清除作用是导致夏季陆坡区域溶解态铝分布异常的重要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号