首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
荧光法测定微型生物细胞内的ATP的技术   总被引:1,自引:0,他引:1  
ATP是生物体内的重要化合物,可用于估算微型生物的生物量,因此它在生态系统食物链和能量流动研究中具有重要意义。根据ATP与荧光素反应产生荧光的原理,可对微型生物细胞内的ATP进行测定。荧光法测定微型生物细胞内ATP灵敏度高、操作简便快捷。本文从样品处理、ATP提取、ATP测定、干扰因素及应用等几个方面介绍了荧光法测定微生物细胞内ATP的技术,评述了这些技术的优缺点和适用范围,总结了ATP提取和测定时可能存在的干扰因素及其采取的相应对策。  相似文献   

2.
In January–February 2001, we measured microbial biomass as ATP and community respiration as ETS activity of organisms < 200 μm in the aphotic zone of the Ross Sea. Microbial respiration amounted to 2.14 mmol C m− 2 day− 1 in the depth range 200–1000 m. Our daily estimates of carbon export are close to the daily percentage of net community production (NCP), removed as sinking biogenic particles from the upper 100 m in the entire Ross Sea, but lower than those of other oceanic systems. Comparing remineralization determined in this study with that obtained by sediment traps in the Ross Sea, it appeared that about 63% of organic carbon remineralized by respiration derived from POC pool. Such evidence highlighted POC source as the main organic fuel of the biological pump in the Ross Sea.  相似文献   

3.
This study investigates the benthic microbial responses to organic matter (OM) variations in quantity and sources in two shallow water bays (Fortaleza and Ubatuba Bays) on the SE coast of Brazil on six occasions during the year. The pelagic and benthic compartments of the bays were evaluated by: (i) nutrients and chlorophyll a (Chl a) in the water column; (ii) quantity and sources of OM in the sediment (Chl a, total organic carbon and total nitrogen and lipid biomarker composition); and (iii) microbial biomass in sediments as an indicator of active benthic response. Although there were changes in water‐column nutrients during the year, Chl a was fairly constant, suggesting a regular supply of microalgae‐derived OM to the sea bottom. Based on the composition of lipid biomarkers in sediments, OM sources were classified as mostly marine and with high contributions of labile (microalgae‐derived) OM. Labile OM composition varied from diatoms in the summer to phytoflagellates in the winter and tended to accumulate in areas protected by physical disturbances in one of the bays. Microbial biomass followed this trend and was 160% higher in protected than in exposed areas. This study suggests that the coupling between labile OM and benthic microbial biomass occurs primarily in protected areas, irrespective of the time of the year. Since meio‐ and macrofaunal assemblages depend upon secondary microbial production within the sediments, this coupling may have an important role for the benthic food‐web.  相似文献   

4.
Organic matter quality, expressed as the proportion of chlorophyll a (Chl a) to degraded organic material (i.e. phaeopigments), is known to influence the structure of benthic associations and plays an important role in the functioning of the ecosystem. This study investigates the vertical distribution of microbial biomass, meiofauna and macrofauna with respect to organic matter variation in Ubatuba, Brazil, a southeastern, subtropical coastal area. On three occasions, samples were collected in exposed and sheltered stations, at high and low hydrodynamic conditions. We hypothesize that benthic assemblages will have high meio‐ and macrofaunal densities and high microbial biomass at the sediment surface at the sheltered site, and lower and vertically homogeneous microbial biomass and densities of meio‐ and macrofauna are expected at the exposed site. The accumulation of fresh organic matter at the sediment surface was observed at both stations over the three sampling dates, which contributed to the higher densities of meiofauna in the first layers of the sediment column. Macrofauna followed the same trend only at the exposed station, but changes in the number of species, biodiversity and feeding groups were registered for both stations. Microbial biomass increased at the sheltered station over the three sampling dates, whereas at the exposed station, microbial biomass was nearly constant. Physical exposure did not influence organic matter loading at the sites and therefore did not affect overall structure of benthic assemblages, which negates our original hypothesis. Most of the benthic system components reacted to organic matter quality and quantity, but relationships between different‐sized organisms (i.e. competition and/or predation) may explain the unchanged microbial profiles at the exposed site and homogeneous vertical distribution of macrofauna at the sheltered site. In conclusion, the high quality of organic matter was a crucial factor in sustaining and regulating the benthic system, but coupled results showed that interactions between micro‐, meio‐ and macrofauna can be highly complex.  相似文献   

5.
Abstract. Recent findings indicate that heterotrophic bacteria and not phytoplankton are the most numerous biomass components even in the euphotic zone of oligotrophic, open oceans. In this study it was hypothesized that the microbial biomass components change within a few hundred meters as oligotrophic water flows across the reef and becomes enriched with nutrients. Along a trophic gradient, four stations at the Atlantic Barrier Reef off Belize (Central America) were sampled for microbial biomass components. Phytoplankton biomass (measured as chlorophyll a) ranged from the most oligotrophic station (St. 1) to the most eutrophic station (St. 4) from 6.9–415.5 μg CI"' (assuming a C:chl a ratio of 30): heterotrophic bacterial biomass increased 4-fold (from 10.1–46.4μg C 1-1), heterotrophic nanoflagellate (HNAN) biomass increased from 4.6-19ug C 1-1, and cyanobacteria from 0.9-4.5 μg C-1-1. Production estimates derived from seawater cultures revealed a 5-fold increase in bacterial production from the oligotrophic station (3.7 ug C 1-1 d-1) to the eutrophic St. 4 (17.8ug C-1-d1-1)- Cyanobacterial production rose from 1.1–3.5ug C-1–d-1 and HNAN production from 0.65-1.13 μg C-1-1 -d-1. While cyanobacteria contributed between 13 and 20% to the autotrophic plankton component in the oligotrophic waters, their contribution dropped to about 1 % at the eutrophic stations.  相似文献   

6.
Bivalve tissue samples were examined over a range of spatial and temporal scales (1993-2001) to determine PAH distributions, trends, and possible sources. Mussels (Mytilus californianus), oysters (Crassostrea gigas), and clams (Corbicula fluminea) were deployed for three months in the estuary at stations remote from known point source discharges. The range of summation operatorPAH detected in bivalves was oysters 184-6899 microg/kg dry wt (mean 678 microg/kg dry wt), mussels 21-1093 microg/kg dry wt (mean 175 microg/kg dry wt), and clams 78-720 microg/kg dry wt (mean 323 microg/kg dry wt). Linear regression analysis showed no statistically significant (p>0.05) temporal trends in clam and mussel summation operatorPAH at any of the deployment stations or estuary segments. On the other hand, a statistically significant (p<0.05) decreasing trend was found in summation operatorPAH in oysters at the Petaluma River station, and in the North Estuary segment. PAH isomer pair ratios applied as diagnostic indicators suggested that the bioaccumulated PAH were derived primarily from petroleum combustion, with lesser amounts derived from biomass and coal combustion, and unburned petroleum.  相似文献   

7.
Dual-beam flow cytometry was used to generate concentration and biomass size spectra (derived from light scatter signals) of bacteria and phytoplankton at the Bermuda Atlantic Time Series (USJGOFS) station in the oligotrophic Sargasso Sea. The size structure of the phytoplankon was characterized by an average slope of −1.8 for the normalized cell concentration spectrum. When bacteria were included, the average slope was −1.9, very close to the point at which there would be an equal amount of biomass in equal sized logarithmic classes (slope=−2.0). Nanoplankton were the major biomass fraction (about 55–85%) in the upper 100 m of the water column where total biomass levels are highest. At greater depths, where total biomass is lower, the relative proportion of picoplankton (especially bacteria) increases (to about 70–90%). Microplankton generally were less than 20% of the microbial community biomass.The size spectra indicate the importance of picophytoplankton at the chlorophyll maximum, consistent with the competitive advantage of small cells in light-limited conditions. Most of the seasonal variability in biomass occured in the nanoplankton fraction, whereas bacteria biomass remained relatively constant. In the spring, increases in the nano- and picoplankton were observed which could be attributed to small increases in nutrient concentrations in the surface layer. Late summer stratification and the subsequent depletion of nutrients from surface waters resulted in a decline in the nano/micro fraction and thus the mean cell size of phytoplankton. Overall, the bacterial contribution to total microbial biomass integrated over the euphotic zone was about 12%, a finding that is lower than that of most other studies. This can be attributed to methodological differences between flow cytometry and microscopy, as well as the choice of cell volume to biomass conversion factors.  相似文献   

8.
施肥对盐沼沉积物微生物生物量和细菌群落组成的影响   总被引:1,自引:1,他引:0  
The effects of nitrogen(N) addition on microbial biomass, bacterial abundance, and community composition in sediment colonized by Suaeda heteroptera were examined by chloroform fumigation extraction method, real-time quantitative polymerase chain reaction, and denaturing gradient gel electrophoresis(DGGE) in a salt marsh located in Shuangtai Estuary, China. The sediment samples were collected from plots treated with different amounts of a single N fertilizer(urea supplied at 0.1, 0.2, 0.4 and 0.8 g/kg(nitrogen content in sediment) and different forms of N fertilizers(urea,(NH_4)_2SO_4, and NH_4NO_3, each supplied at 0.2 g/kg(calculated by nitrogen).The fertilizers were applied 1–4 times during the plant-growing season in May, July, August, and September of 2013. Untreated plots were included as a control. The results showed that both the amount and form of N positively influenced microbial biomass carbon, microbial biomass nitrogen, and bacterial abundance. The DGGE profiles revealed that the bacterial community composition was also affected by the amount and form of N.Thus, our findings indicate that short-term N amendment increases microbial biomass and bacterial abundance,and alters the structure of bacterial community.  相似文献   

9.
The plankton food web structure and trophodynamics in the neritic area of Sagami Bay were investigated from January 2003 to December 2005, based on abundance, biomass, production rate and nutritional requirements of pico- (0.2–2 μm), nano- (2–20 μm), micro- (20–200 μm) and mesoplankton (>200 μm: mainly copepods CI-CVI) at 0–10 m depth. The average carbon biomass of the total plankton community was higher in spring and summer (1.452 and 1.466 g C m−2, respectively) than in winter and autumn (0.676 and 0.686 g C m−2, respectively). The average values of primary production and of production rate and food requirement of heterotrophic organisms were higher in summer than in other seasons. During the study period the biomass, production rate and food requirement of small heterotrophs (i.e. bacteria: BA; heterotrophic nanoflagellates: HNF; microzooplankton: MZ) were much higher than those of copepod secondary (CSP) and tertiary producers (CTP), indicating that the microbial food web was the main route of carbon flow from phytoplankton (PP) to CSP and CTP, rather than the grazing food chain. In particular, during summer and autumn the biomass of pico- and nano-size PP plus BA was greater than that of micro-size PP, suggesting the high prevalence of the microbial food web (pico-/nanophytoplankton/BA-HNF/MZ-copepods). During winter and spring, the biomass of micro-size PP was greater than that of pico- and nano-size PP plus BA, suggesting that the indirect route (microphytoplankton-MZ-copepods) probably prevailed, while the microbial food web might be important.  相似文献   

10.
底栖生物是海洋环境质量的重要指标。2016年夏季对舟山近岸海域37个站位的底栖生物进行调查,此次调查共鉴定出底栖生物45种,平均栖息密度为41 ind/m2,平均生物量为3.92 g/m2,底栖生物的栖息密度和生物量基本上由西向东逐渐升高。底栖生物的种类、密度、生物量、多样性指数与水深及水质中的盐度、pH、悬浮物、总磷、总氮呈弱或中等程度相关,与沉积物中重金属(铜、锌、铅、镉、铬、总汞)、砷、有机碳呈弱或中等程度的相关性,尤其与镉含量的相关性最为明显。由ABC曲线分析可知,该调查海域底栖生物受到一定程度的扰动。与2005年该海域调查结果比较表明,该海域底栖生物的多样性指数平均值较2005年略有降低,平均生物量较2005年降低,但平均密度较2005年升高。此次调查出现无底栖生物站位所占的比例较2005年上升。研究表明,2016年舟山海域海洋环境质量状况劣于2005年,应加强海洋环境监测与治理。  相似文献   

11.
Quantitative information on the abundance and biomass of metazoan meiofauna was obtained from samples collected at 15 deep-sea stations in the Eastern Mediterranean Sea (533–2400m). Meiofaunal abundance was compared to bacterial biomass and other environmental factors such as the total sedimentary organic matter content, the concentrations of the main biochemical classes of organic compounds (i.e. proteins, carbohydrates and lipids) and to ATP. To estimate the sedimentation potential of primary organic matter, sediment bound chloroplastic pigment equivalents (CPE) were assayed. Meiofaunal density was very low ranging from 4 ind.10cm−2 (Station A4, 1658m depth) to 290 ind.10cm−2 (Station A12, 636m depth). Nematodes were the numerically dominant taxon (68% of total meiofauna) and were usually confined to the top 6cm of the sediments. Total meiofaunal biomass ranged from 2.78μgC 10cm−2 (Station A4) to 598.34μgC 10cm−2 (Station 15A). There was a significant decrease in the density of metazoan meiofauna with water depth. Bacterial biomass largely dominated the total biomass (as the sum of bacterial and meiofaunal biomass) with an average of 73.2% and accounted for 35.8% of the living biomass (as ATP carbon) whereas meiofaunal biomass accounted only for 6.56%. Bacterial biomass was significantly related to the DNA concentrations of the sediment. A significant correlation between ATP concentration and CPE content was also found. No correlations were found between meiofauna, ATP and CPE, or between meiofauna and bacterial parameters. The significant relationship between meiofaunal density and the ratio of labile organic matter/total organic matter indicates that deep-sea meiofauna inhabiting an extremely oligotrophic environment (such as the Eastern Mediterranean) may be more nutritionally dependent upon the quality than on the quantity of sedimentary organic matter.  相似文献   

12.
Spatial and temporal distribution patterns of zooplankton are highly variable in the Northern Benguela Upwelling System. We studied the distribution of zooplankton (size class ≥ 0.33 mm) and used field data from four cruises that took place between March 2008 and February 2011, as well as simulation results of a regional ecosystem model. Remotely sensed sea surface temperatures (SST) and surface chlorophyll concentrations were analysed to investigate environmental influences on zooplankton biomass. The Intense Benguela Upwelling Index showed a distinct seasonal signal throughout the years and the highest upwelling peaks in August/September. Even though surface chlorophyll concentrations were very variable throughout the year, the highest concentrations were always detected in September, following the upwelling of nutrient‐rich water. In field catches, zooplankton biomass concentration in the upper 200 m was highest above the outer shelf and shelf‐break in December 2010 and February 2011, i.e. 6 months after the upwelling peaks. In contrast, zooplankton biomass simulated by the model in the surface water was highest in September. In March/April, biomass maxima were typically measured in the field at intermediate water depths, but the vertical distribution was also affected by extensive oxygen minimum zones. The ecosystem model reproduced this vertical pattern. Although general trends were similar, simulation data of zooplankton standing stocks overestimated the field data by a factor of 3. In upwelling systems, food webs are generally considered to be short and dominated by large cells. However, our field data indicate more small‐sized zooplankton organisms above the shelf than offshore.  相似文献   

13.
The spatial and temporal biomass distribution of Chaceon affinis and its vulnerability to fishing activity in Gran Canaria (Canary Islands) were investigated. The first goal was to assess the influence of the slope steepness and substrate on the size of crab patches, size of the crabs, and crab biomass. The second goal was to evaluate spatial and temporal variation in the biomass over a 15‐month period. The last goal was to assess the influence of fishing activity upon the reduction in the biomass over the same 15‐month period. Only two or three locations in the sampling area generated high‐biomass contour patches. When these patches were superimposed on the isobath lines, they were coincident with the main depth range described for the species in the area. The map of the biomass values clearly showed three structures with cores of the highest biomass in both muddy and rocky‐muddy areas. The biomass was higher on muddy than on rocky‐muddy bottoms. Biomass was twice as high when steepness was reduced to one third between isobaths of 500 and 900 m. The size of crab patches increases linearly with the decrease in slope steepness. The spatial structure of crabs remained fairly stable over time, showing that biomass changes with depth over time. Maps of the estimated biomass values over the 15‐month period showed the same two main patches over time with the cores of highest biomass separated by a distance of between 4.2 and 4.5 km. Although the bathymetric distribution by sexes showed temporal changes, with a displacement to deeper areas made by both sexes over the studied period, only a partial temporal segregation between males and females was observed. During the study period, crabs underwent a significant decline in biomass and this was consistent with the combined catches of both commercial and experimental fishing in the area. Due to its low mobility, C. affinis is highly vulnerable to local depletion by intensive fishing efforts.  相似文献   

14.
Although megafaunal organisms play an important role in deep benthic ecosystems and contribute significantly to benthic biomass in the Arctic little is known about their temporal dynamics. Here, we assessed the interannual dynamics of megafaunal organisms from the HAUSGARTEN observatory in the Fram Strait, an area where the effects of climatic forcing are particularly evident. We analysed three congruent camera transects taken in 2002, 2004 and 2007. Environmental parameters were measured in order to be able to put our faunal results into an environmental context.Our results indicate that although the densities of megafaunal species show different patterns over time, most exhibit an overall decrease between 2002 and 2007 and total megafaunal densities decreased regularly from 2002 to 2004 to 2007 (12.16±0.96 to 7.41±0.43 ind m−2). This concurs with a steady increase in bottom-water temperatures and a decrease in the total organic content and microbial biomass of surficial sediments at the same time period. Although suspension feeder densities also decreased, predator/scavenger and deposit feeder densities have declined to such an extent that suspension feeders accounted for almost 100% of the megafauna in 2007. It could thus be argued that the trophic diversity at the central HAUSGARTEN station (2500 m) has decreased. Temperature-related changes in the production of the surface layers may lead to changes in the quality and/or quantity of particles exported to the deep seafloor. The densities of deposit feeders (i.e. holothurians) peaked (1.14±0.13 ind m−2) in 2004, the year following the longest ice cover. These results indicate the importance of ice-related export of particles to the deep seafloor and highlight the need for time-series transects, especially in an era when productive marginal ice zones tend to disappear with the receding sea ice. Although there is a general consensus that the Arctic is in a transition towards a warmer state, only continued observation will allow us to assess if the interannual changes observed are a result of decadal cycles related to the Arctic and North Atlantic Oscillation or if they are indicators of long-term change.  相似文献   

15.
Variation in the microbial biomass and community structure found in sediment of heavily polluted bays and the adjacent unpolluted areas were examined using phospholipid fatty acid analysis. Total microbial biomass and microbial community structure were responding to environmental determinants, sediment grain size, depth of sediment, and pollution due to petroleum hydrocarbons. The marker fatty acids of microeukaryotes and prokaryotes - aerobic, anaerobic, and sulfate-reducing bacteria -were detected in sediments of the areas studied. Analysis of the fatty acid profiles revealed wide variations in the community structure in sediments, depending on the extent of pollution, sediment depth, and sediment grain size. The abundance of specific bacterial fatty acids points to the dominance of prokaryotic organisms, whose composition differed among the stations. Fatty acid distributions in sediments suggest the high contribution of aerobic bacteria. Sediments of polluted sites were significantly enriched with anaerobic bacteria in comparison with clean areas. The contribution of this bacterial group increased with the depth of sediments. Anaerobic bacteria were predominantly present in muddy sediments, as evidenced from the fatty acid profiles. Relatively high concentrations of marker fatty acids of sulfate-reducing bacteria were associated with organic pollution in this site. Specific fatty acids of microeukaryotes were more abundant in surface sediments than in deeper sediment layers. Among the microeukaryotes, diatoms were an important component. Significant amounts of bacterial biomass, the predominance of bacterial biomarker fatty acids with abundance of anaerobic and sulfate-reducing bacteria are indicative of a prokaryotic consortium responsive to organic pollution.  相似文献   

16.
汕头港污损生物生态研究   总被引:10,自引:0,他引:10  
1991年6月至1992年5月在汕头港进行污损生物挂板实验,同时调查港区浮标,码头和船底的污损生物,调查方法采用国际海洋调查规范。获119种生物,试板72种,浮标和船底70中,码头54种,其中,泥藤壶、网纹藤壶、僧帽牡蛎、翡翠胎贝、太平洋侧花海葵、双枝薮枝螅和双节螅的优势种。  相似文献   

17.
In an extended deep-sea study the response of the benthic community to seasonally varying sedimentation rates of organic matter were investigated at a fixed abyssal site in the NE Atlantic (BIOTRANS station or JGOFS station L2 at 47°N–20°W, water depth >4500 m) on four legs of METEOR expedition 21 between March and August 1992. The vertical flux at 3500 m depth and temporal variations in the chloroplastic pigment concentration, a measure of phytodetritus deposition, and of total adenylates and total phospholipids, measures of benthic biomass, and of activity of hydrolytic enzymes were observed. The flux patterns in moored sediment traps of total chlorophyll, POC and total flux showed an early sedimentation peak in March/April 1992, followed by low fluxes in May and intermediate ones from June to August. Thus 1992 differed from other years, in which one large flux peak after the spring phytoplankton bloom was observed. Unusually high concentrations of chloroplastic pigments were consistently observed in March 1992, reflecting the early sedimentation input. At the same time biomass of small benthic organisms (bacteria to meiobenthos) and activity of hydrolytic enzymes were higher compared to values from March 1985 and from the following months in 1992. In May and August 1992 pigment concentrations and biomass and activity parameters in the sediment were lower than during previously observed depositions of phytodetrital matter in summer. The data imply that the deep ocean benthic community reacts to small sedimentation events with transient increases in metabolic activity and only small biomass production. The coupling between pelagic and benthic processes is so close that interannual variability in surface water production is “mirrored” by deep-sea benthic processes.  相似文献   

18.
Microbial biomass in seawater of Shimoda Bay was assessed using some biomass parameters, such as ATP, DNA, RNA, protein, chlorophylla, and bacterial number and every estimate is in the same order. The estimates based on the amounts of ATP, DNA and RNA showed good correlation.  相似文献   

19.
Short‐term effects of deposit feeding on benthic micro‐organisms are known from several marine environments, but longer‐term influences of deposit feeders have not been extensively investigated. The long‐term microbial response to deposit feeding by the gastropod Amphibola crenata was monitored in a 10‐month field study where deposit feeding intensity was controlled in artificial enclosures. The presence of the snail resulted in a minor decrease in bacterial numbers and a slight increase in heterotrophic activity relative to bacterial cell numbers. This effect may have been the long‐term signature of a previously reported pulse in bacterial production during the recolonisation of Amphibola faeces. Normal snail density had a strong inhibitory effect on primary productivity by the benthic microalgae, reducing CO2 fixation to 29–47% of levels that could be attained when snails were excluded. Variations in the effect of deposit feeding on micro‐organisms over the experimental period suggest that it may be modified by seasonal factors acting on benthic communities. In a similar interaction of influences, seasonal changes in microbial biomass and activity appeared to vary with snail density.  相似文献   

20.
The Magnuson–Stevens Fishery Conservation and Management Act (MSA) was amended in 1996 to require that overfished stocks be rebuilt in as short a time period as possible, not to exceed 10 years, with limited exceptions. This comment examines the basic but important question of whether the implementation of rebuilding plans under the 1996 amendments has in fact been associated with biomass recovery. Specifically, for each of the 44 stocks examined, this analysis compares the biomass trend before rebuilding plan implementation to the trend after rebuilding plan implementation using a linear trend-break model. The analysis demonstrates a statistically significant positive association between the implementation of rebuilding plans and standardized biomass in 19 of 44 stocks. None of the 44 stocks examined showed a statistically significant negative association. The analysis showed a strong temporal relationship between the implementation of the policy and rebounds in fish stocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号