首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
针对传统雷达回波外推算法在快速增长或消散降水过程预报精度较低的问题,利用华南雷达回波拼图资料数据,建立ConvLSTM回波外推模型,对广西区域范围进行短临降水预报研究.采用气象业务中的正确率(POD)、临界成功指数(CSI)及误报率(FAR)评判标准检验预报模型,并将ConvLSTM与光流法的预报结果进行对比分析.结果 表明,ConvLSTM模型的CSI、POD分别比光流法提高0.06和0.059,而FAR下降了0.058.ConvLSTM方法比光流法的回波外推预报准确率高,该方法可为广西短临降水预报提供新的参考.  相似文献   

2.
利用2011—2013年6—8月291个样本武汉站的探空资料计算了20种与雷电活动有关的对流参数,经统计分析后发现多个对流参数与雷电活动具有显著的相关性;选取与雷电相关性较好的对流参数作为预报因子,并用多元线性回归方法建立雷电潜势预报方程,方程通过了α=0.05的显著性水平检验;使用2014年6—8月的观测数据进行预报效果检验,结果表明:雷电预报的命中率POD为82.6%,虚假报警率FAR为23.3%,临界成功指数CSI为63.3%。由此可见,该方法的建立对武汉市雷电天气的预报和预警具有参考价值和指示意义。  相似文献   

3.
雷达回波外推是短临降水预报的一种重要方法。针对雷达回波外推中随着外推时间的增加而出现回波演变信息丢失这一问题,本文提出一种多尺度特征融合的深度学习短临降水预报模型(以下简称为MSF2)。首先,采用多尺度的卷积核对网络的浅层信息进行特征提取,弥补单一特征检测带来的不足。其次,将不同维度的特征信息进行拼接及通道混洗,进一步增强特征图通道之间的信息流通和信息表达能力。最后,将特征图中的多尺度信息进行融合,从而有效保留不同尺度的特征信息。利用华南雷达回波拼图资料数据,在3种不同降水强度(5 mm/h、10 mm/h和25 mm/h)下进行降水预报研究,并与光流法和ConvLSTM两种主流算法进行了对比。结果显示,在3种不同降水强度条件下,MSF2在所有评价指标(命中率POD、临界成功指数CSI、误报率FAR)中表现最优,这表明引入多尺度机制能改善模型的特征提取能力。相比于目前主流的光流法和ConvLSTM,本文提出的模型对于短临降水预报具有较好的适用性和较高的预报精度,而且实现了业务化运行。  相似文献   

4.
李健  王宇  刘泽  李哲  吴大伟  陶汉涛  张磊 《气象科技》2022,50(5):724-733
利用卷积神经网络和门控循环单元(Gated recurrent units )神经网络,基于雷达反射率因子和雷电定位数据开展了雷电预报研究。首先构建了引用注意力机制的基于卷积神经网络和门控循环单元神经网络的深度学习模型(Attention ConvGRU);然后将雷达反射率因子数据和对应时间段(6 min)的雷电定位数据处理成图像数据后输入深度学习模型,训练出可预报雷电的模型,包括3种模型:单雷电数据模型、单雷达数据模型和雷电〖CD*2〗雷达双数据模型;最后开展了预报试验和定量评估。综合评估表明,本文建立的雷电预报模型综合预报准确率达到96.74%,虚警率35.83%,关键成功指数(Critical Success Index, CSI)为0.2072。个例分析表明,预报模型对于具有明显移动趋势的雷暴过程(A类雷暴)的预报效果优于不具有明显移动趋势的雷暴过程(B类雷暴),且随着B类雷暴强度减弱模型预报能力逐渐减弱。  相似文献   

5.
为探究影响山岳型景区雷电发展的关键因素,实时掌握黄山风景区及周围雷电发展趋势,采用多普勒天气雷达、气象探空、闪电定位等多种监测数据,根据雷电发生基本物理原理,从系统强度、旺盛程度和移动趋势3个方面提取雷达回波特征作为关键预报因子,基于多种机器学习算法建立了雷电临近预报模型,结果表明:随机森林(RF)、逻辑回归(LR)、K-临近(KNN)、贝叶斯(GNB)、支持向量机(SVM)5种机器学习算法均对雷电具有一定临近预报能力,RF的TS最高,SVM漏报率最低,LR空报率最低;在RF算法中雷暴系统强度和发展旺盛程度两类因子起主要作用,其中作用最大的是雷暴系统强度中-20℃层高度雷达基本反射率,其次是0℃层以上回波厚度。  相似文献   

6.
利用2007—2013年安徽省闪电定位资料和蚌埠地区雷电灾害资料,选取安徽省蚌埠地区36个致灾雷电样本作为建模样本,采用全球预报系统GFS(Global Forecasting System)模式的强对流参数作为预报因子,利用Logistic回归法建立了蚌埠地区4种类型致灾雷电的预报模型。结果表明:CAPE、LFTX和PW共3个参数可作为蚌埠地区致灾雷电预报的指标;建立的4种类型致灾雷电模型的预报效果较好,其中08—14时雷电预报模型的总体预报准确率最高,可达83.00%。当雷电预报模型输出概率偏高且超过0.7时,4种致灾雷电预报模型的预报技巧评分最高,且预报准确率最高,失误率和虚警率较低,预报效果较好。夏季致灾雷电预报模型的整体预报效果较好,平均预报准确率达82.20%,特别是在雷电发生的密集地区,预报出了雷电的高概率分布。  相似文献   

7.
基于天气雷达资料的外推预报是灾害天气0~2 h临近预报基础,本文以业务应用为目标,应用广东省2015-2018年11部新一代多普勒雷达反射率拼图资料,研究了基于卷积门控循环单元神经网络ConvGRU的临近预报方法,采用多损失函数加权与分级加权的策略,基于ConvGRU框架建立三层自编码模型(Encoder-Decoder)的雷达回波临近预测模型,进行未来2 h逐6 min、连续20帧雷达回波图的预测,并与业务上已经应用的交叉相关法、光流法和粒子滤波法的临近预报结果对比,进行典型个例分析和长时间检验。结果表明,基于ConvGRU方法对强对流天气具有较好的预报效果,对雷达回波位置、强度和形状与实况更接近,表明深度学习方法通过对时间序列数据的学习,能较好地把握强回波区域的特征,在一定程度上能够相对比较准确地预报较强回波范围,但该方法预报雷达回波图像存在损失空间细节信息的局限,且对层状云降水的预报效果较差;ConvGRU方法的临界成功指数(CSI)和命中率(POD)评分高于传统的交叉相关法、光流法和粒子滤波法,且虚警率(FAR)评分为最小,在业务中具有广泛的应用前景。  相似文献   

8.
利用最新的深度学习算法,即卷积长短期记忆(Convolution Long-Short Term Memory)神经网络,构建基于深度学习的人工智能短临预报系统,以广州地区2019年3-5月雷达观测的数据为输入进行训练,然后进行短期1h内的降水预报。利用常用的统计评分指标(探测率POD、误报率FAR、临界成功指数CSI,相关系数CC)检验模型。结果表明,预报结果与实际观测的相关系数在1h内预报均保持在0.6以上,在1h内预报探测率均保持在80%以上,临界成功指数在降水强度为10mm·h^-1时,基本保持在60%,误报率均小于40%。  相似文献   

9.
利用2014-2015年夏季雷达资料获取雷暴发生有无数据, 计算探空资料的对流指数与雷暴发生有无数据的灰色关联度, 发现雷暴产生跟抬升凝结高度气压、850~700 hPa的温度和露点温度、风切变的关系最紧密。接着建立广州白云机场终端区内3类区域(离塔台中心8 km、50 km、100 km)的12小时随机森林分类模型, 对不同区域的雷暴潜势进行预报和评估, 发现终端区区域面积越大, 雷暴发生样本比例越高, 临界成功指数CSI、预报准确率AF、探测概率POD越来越高, 虚假报警率FAR越来越低, 表明预报出来的准确率越来越高。离塔台中心50 km和100 km区域的预报准确率AF和探测概率POD超过70%, 对航空重要天气MDRS通报业务有指示作用。同时袋外错误率均低于1/3, 随机森林算法的泛化性能好。   相似文献   

10.
《高原气象》2021,40(4):898-908
冰雹是一种致灾性较强的强对流天气,但在气象业务工作中对其进行快捷、准确的预警和预报仍有一定的难度。本文基于C波段雷达回波资料,构建并应用随机森林模型对冰雹及其伴随强对流天气进行了分类识别及预报。结果发现,随机森林模型对训练集(2008-2017年)中四类冰雹天气(冰雹、冰雹大风、冰雹短强、冰雹大风短强)的平均命中率(Probability of Detection,POD)为90.2%,平均空报比率(False Alarm Ratio,FAR)为11.1%。对于2018-2019年的独立样本测试集,模型的平均POD和FAR则分别为72.8%和34.7%。因此,本文构建的随机森林模型较为理想。应用模型和风暴单体识别与跟踪产品(Strom Cell Identification and Tracking,SCIT)对未来15~60 min的强对流天气进行预报,结果表明四类冰雹天气的平均POD为74.8%,平均临界成功指数为60.8%,平均FAR为24.4%。因此,利用C波段雷达产品,随机森林模型能高效、自动化且较为准确地分类预警、预报冰雹及其伴随强对流天气,可应用于天气预报业务工作。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

16.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

17.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

18.
基于最新的GTAP8 (Global Trade Analysis Project)数据库,使用投入产出法,分析了2004年到2007年全球贸易变化下南北集团贸易隐含碳变化及对全球碳排放的影响。结果显示,随着发展中国家进出口规模扩张,全球贸易隐含碳流向的重心逐渐向发展中国家转移。2004年到2007年,发达国家高端设备制造业和服务业出口以及发展中国家资源、能源密集型行业及中低端制造业出口的趋势加强,该过程的生产转移导致全球碳排放增长4.15亿t,占研究时段全球贸易隐含碳增量的63%。未来发展中国家的出口隐含碳比重还将进一步提高。贸易变化带来的南北集团隐含碳流动变化对全球应对气候变化行动的影响日益突出,发达国家对此负有重要责任。  相似文献   

19.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

20.
Hourly outgoing longwave radiation(OLR) from the geostationary satellite Communication Oceanography Meteorological Satellite(COMS) has been retrieved since June 2010. The COMS OLR retrieval algorithms are based on regression analyses of radiative transfer simulations for spectral functions of COMS infrared channels. This study documents the accuracies of OLRs for future climate applications by making an intercomparison of four OLRs from one single-channel algorithm(OLR12.0using the 12.0 μm channel) and three multiple-channel algorithms(OLR10.8+12.0using the 10.8 and 12.0 μm channels; OLR6.7+10.8using the 6.7 and 10.8 μm channels; and OLR All using the 6.7, 10.8, and 12.0 μm channels). The COMS OLRs from these algorithms were validated with direct measurements of OLR from a broadband radiometer of the Clouds and Earth's Radiant Energy System(CERES) over the full COMS field of view [roughly(50°S–50°N, 70°–170°E)] during April 2011.Validation results show that the root-mean-square errors of COMS OLRs are 5–7 W m-2, which indicates good agreement with CERES OLR over the vast domain. OLR6.7+10.8and OLR All have much smaller errors(~ 6 W m-2) than OLR12.0and OLR10.8+12.0(~ 8 W m-2). Moreover, the small errors of OLR6.7+10.8and OLR All are systematic and can be readily reduced through additional mean bias correction and/or radiance calibration. These results indicate a noteworthy role of the6.7 μm water vapor absorption channel in improving the accuracy of the OLRs. The dependence of the accuracy of COMS OLRs on various surface, atmospheric, and observational conditions is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号