首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
Typhoon KROSA in 2007 is simulated using GRAPES, a mesoscale numerical model, in which a two-parameter mixed-phase microphysics scheme is implanted. A series of numerical experiments are designed to test the sensitivity of landfalling typhoon structure and precipitation to varying cloud microphysics and latent heat release. It is found that typhoon track is sensitive to different microphysical processes and latent heat release. The cloud structures of simulated cyclones can be quite different with that of varying microphysical processes. Graupel particles play an important role in the formation of local heavy rainfall and the maintenance of spiral rainbands. Analysis reveals that the feedback of latent heat to dynamic fields can significantly change the content and distribution of cloud hydrometeors, thus having an impact on surface precipitation.  相似文献   

2.
A heavy rainfall event that occurred in Shandong Province in 26 28 August 2004 was caused mainly by Typhoon Acre and cold air activities related to a westerly trough. The event was triggered by an inverted typhoon trough, which was closely associated with the intensification of the low-level southeasterly flow and the northward transport of heat and momentum in the periphery of the typhoon low. A numerical simulation of this event is performed using the nonhydrostatic mesoscale model MM5 with two-way interactive and triply-nested grids, and the structure of the inverted typhoon trough is studied. Furthermore, the formation and development mechanism of the inverted typhoon trough and a mesoscale vortex are discussed through a vorticity budget analysis. The results show that the heavy rainfall was induced by the strong convergence between the strong and weak winds within the inverted typhoon trough. Dynamic effects of the low-level jet and the diabatic heating of precipitation played an important role in the development of the inverted typhoon trough and the formation of the mesoscale vortex. The vorticity budget analysis suggests that the divergence term in the low troposphere, the horizontal advection term, and the convection term in the middle troposphere were main contributors to positive vorticity. Nonetheless, at the same pressure level, the effect of the divergence term and that of the adveetion term were opposite to each other. In the middle troposphere, the vertical transport term made a positive contribution while the tilting term made a negative contribution, and the total vorticity tendency was the net result of their counteractions. It is found that the change tendency of the relative vorticity was not uniform horizontally. A strong positive vorticity tendency occurred in the southeast of the mesoscale vortex, which is why the heavy rainfall was concentrated there. The increase of positive vorticity in the low (upper) troposphere was caused by horizontal convergence (upward transport of vorticity from the lower troposphere). Therefore, the development of the inverted typhoon trough and the formation of the mesoscale vortex were mainly attributed to the vorticity generated in the low troposphere, and also the vertical transport of vorticity from the low and middle troposphere.  相似文献   

3.
Numerical studies have been carried out to investigate the sustention and intensification of Typhoon Nina (7503), and the impacts of saturated wetland on the sustention and rainfall of tropical cyclone (TC) over land through sensitivity experiments, using the PSU/NCAR non-hydrostatic mesoscale model MM5v3 and its TC bogus scheme. The results show that the vertical transfer of fluxes in the boundary layer over saturated wetland has significant influence on the intensity, structure, and rainfall of a landfalling TC. The latent heating flux and the sensible heating flux are both favourable for TC sustaining and intensification on which the latent heating transfer is more favourable than the sensible heating transfer. They are also favourable for the maintenance of the spiral structure, and have an evident effect on the distribution of TC rainfall. The momentum flux weakens the TC vortex wind fields significantly, and is the dominant factor to dissipate and fill in a low pressure system, while it increases the local precipitation induced by a typhoon.  相似文献   

4.
We analyzed cloud microphysical processes’ latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island, China, using the mesoscale numerical model WRF and WRF-3DVAR system. We found that positive latent heat occurred far above the zero layer, while negative latent heat occurred mainly under the zero layer. There was substantially more positive latent heat than negative latent heat, and the condensation heating had the most important contribution to the latent heat increase. The processes of deposition, congelation, melting and evaporation were all characterized by weakening after their intensification; however, the variations in condensation and sublimation processes were relatively small. The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water, the condensation of rain, and the deposition increase of cloud ice, snow and graupel. The main cloud microphysical processes for negative latent heat were the evaporation of rain, the melting and enhanced melting of graupel. The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation. Without the condensation and evaporation of rain, the total latent heating would decrease and the moisture variables and precipitation would reduce significantly. Without deposition and sublimation, the heating in high levels would decrease and the precipitation would reduce. Without congelation and melting, the latent heating would enhance in the low levels, and the precipitation would reduce.  相似文献   

5.
Weather and Climate Effects of the Tibetan Plateau   总被引:5,自引:1,他引:4  
Progress in observation experiments and studies concerning the effects of the Tibetan Plateau (TP) on weather and climate during the last 5 years are reviewed. The mesoscale topography over the TP plays an important role in generating and enhancing mesoscale disturbances. These disturbances increase the surface sensible heat (SH) flux over the TP and propagate eastward to enhance convection and precipitation in the valley of Yangtze River. Some new evidence from both observations and numerical simulations shows that the southwesterly flow, which lies on the southeastern flank of the TP, is highly correlated with the SH of the southeastern TP in seasonal and interannual variability. The mechanical and thermal forcing of the TP is an important climatic cause of the spring persistent rains over southeastern China. Moreover, the thermodynamic processes over the TP can influence the atmospheric circulation and climate over North America and Europe by stimulating the large-scale teleconnections such as the Asian-Pacific oscillation and can affect the atmospheric circulation over the southern Indian Ocean. Estimating the trend in the atmospheric heat source over the TP shows that, in contrast to the strong surface and troposphere warming, the SH over the TP has undergone a significant decreasing trend since the mid-1980s. Despite the fact that in situ latent heating presents a weak increasing trend, the springtime atmospheric heat source over the TP is losing its strength. This gives rise to reduced precipitation along the southern and eastern slopes of the TP and to increased rainfall over northeastern India and the Bay of Bengal.  相似文献   

6.
A sensitive numerical simulation study is carried out to investigate the effects of condensation heating and surface fluxes on the development of a South China MCS that occurred during 23 – 24 May 1998. The results reveal the following: (1) Condensation heating plays an important role in the development of MCS. In every different stage, without condensation heating, MCS precipitation is significantly reduced, and quickly dissipates. (2) Condensation heating demonstrates most importantly during the early development stages of MCS vortex; as the vortex develops stronger, the condensation heating effects reduces. (3) By affecting the MCS development processes, condensation heating also influences the formation of MCS mesoscale environment structure features such as low-level jet (mLLJ), upper-level divergence. (4) By changing the antecedent environmental circulation, the surface fluxes also play an important role in the development of MCS. Because of the surface heating, pressure declines over the heavy rainfall and MCS happening regions, which results in the intensification of southerly flows from the ocean along the South China coastline areas, and leads to the enhancement of horizontal convergence and increase of vapor amount in the lower layer. All of these make the atmosphere more unstable and more favorable for the convection.  相似文献   

7.
In this paper, a sudden heavy rainfall event is analyzed, which occurred over the Yellow River midstream during 5–6 August 2014. We used observational, NCEP/NCAR reanalysis, high-resolution satellite, and numerical simulation data. The main results are as follows. Under an unfavorable environmental circulation, inadequate water vapor and unfavorable dynamic conditions but sufficient energy, a local sudden heavy rainfall was caused by the release of strong unstable energy that was triggered by cold air transport into middle and lower layers and the propagation of gravity waves. The distributions of rain area, rain clusters, and 10-minute rainfall showed typical mesoscale and microscale fluctuation characteristics. In the mesoscale rain area or upstream, there was a quasi-stationary wave of mesoscale gravity waves with their propagation downstream. In the course of propagation from southwest to northeast, the wavelength became longer and the amplitude attenuated. In the various phases of gravity wave development, there were evident differences in the direction of the wave front. Wave energy was mainly in the lower layers. Unstable vertical wind shear at heights of 1–6 km provided fluctuation energy for the gravity waves. The mechanisms of heavy rainfall formation were different at Linyou and Hancheng stations. Diabatic heating was the main source of disturbed effective potential energy at Linyou. The explosive short-period strong precipitation was caused by the release of strong effective potential energy triggered by the gravity waves, and its development and propagation after that energy maximized. In contrast, the latent heat release of upstream precipitation was the main source of disturbed effective potential energy at Hancheng. This formed a positive feedback mechanism that produced continuous precipitation. In the studied event, the development of westerly belt systems had disturbed the wind field. The contribution of kinetic energy generated by this disturbance could not be ignored. The Froude number, mountain shape parameter, and ratio between mountain height and temperature inversion layer thickness had various effects of atmosphere and terrain on mesoscale and microscale mountain waves. In upper and lower layers, there were five airflows that were strengthened by the terrain. All these had important influences on local heavy rainfall at Linyou and Hancheng stations.  相似文献   

8.
The vertical motions and secondary circulation of an explosively deepening oceanic cyclone,which oc-curred over the Northwest Pacific Ocean and was in conjunction with 200 hPa-level jet stream and hascentral pressure falls of 33.9 hPa/24h,have been computed from seven-level nonlinear balance model and Saw-yer-Eliassen-Shapiro equation for the transverse ageostrophic circulation.The vertical motions are partitionedinto contributions from large-scale latent heat release,effect of cumulus heating,thermal advection,differen-tial vorticity advection,etc.,while the secondary circulation stream function is partitioned into contributionsfrom geostrophic deformation,transfer of momentum and heat in the area of cumulus and diabatic heating.The principal results are the following.Large-scale latent heat release is very crucial to the explosive de-velopment of cyclones.If there is enough transfer of moisture,the positive feedback process between ascentof air and large-scale heating would work.The cumulus heating and the transfer of momentum and heatin the area of cumulus play an important role during the explosively deepening stage.Thermal advection isthe initial triggering condition for large-scale heating and the conditional instability for the convection ofcumulus.  相似文献   

9.
With the pros and cons of the traditional optimization and probability pairing methods thoroughly considered, an improved optimal pairing window probability technique is developed using a dynamic relationship between the base reflectivity Z observed by radar and real time precipitation I by rain gauge. Then, the Doppler radar observations of base reflectivity for typhoons Haitang and Matsa in Wenzhou are employed to establish various Z-I relationships, which are subsequently used to estimate hourly precipitation of the two typhoons. Such estimations are calibrated by variational techniques. The results show that there exist significant differences in the Z-I relationships for the typhoons, leading to different typhoon precipitation efficiencies. The typhoon precipitation estimated by applying radar base reflectivity is capable of exhibiting clearly the spiral rain belts and mesoscale cells, and well matches the observed rainfall. Error statistical analyses indicate that the estimated typhoon precipitation is better with variational calibration than the one without. The variational calibration technique is able to maintain the characteristics of the distribution of radar-estimated typhoon precipitation, and to significantly reduce the error of the estimated precipitation in comparison with the observed rainfall.  相似文献   

10.
In order to investigate air-sea interactions during the life cycle of typhoons and the quantificational effects of typhoon-induced SST cooling on typhoon intensity, a mesoscale coupled air-sea model is developed based on the non-hydrostatic mesoscale model MM5 and the regional ocean model POM, which is used to simulate the life cycle of Typhoon Chanchu (2006) from a tropical depression to a typhoon followed by a steady weakening. The results show that improved intensity prediction is achieved after considering typhoon-induced SST cooling; the trend of the typhoon intensity change simulated by the coupled model is consistent with observations. The weakening stage of Typhoon Chanchu from 1200 UTC 15 May to 1800 UTC 16 May can be well reproduced, and it is the typhoon-induced SST cooling that makes Chanchu weaken during this period. Analysis reveals that the typhoon-induced SST cooling reduces the sensible and latent heat fluxes from the ocean to the typhoon's vortex, especially in the inner-core region. In this study, the average total heat flux in the inner-core region of the typhoon decrease by 57.2%, whereas typhoon intensity weakens by 46%. It is shown that incorporation of the typhoon-induced cooling, with an average value of 2.17℃, causes a 46-hPa weakening of the typhoon, which is about 20 hPa per 1℃ change in SST.  相似文献   

11.
利用可分辨云模式及中国南海北部试验区加密探空的平均水平风场、位温场和水汽场模拟分析了1998年5月15日至6月11日中国南海北部地区中尺度对流系统(Mesoscal Convective System,简称MCS)中冰相相变潜热对云和降水、辐射传输以及大尺度环境场的影响作用。研究表明,冰相相变潜热总体上不会引起明显的大气辐射通量的变化,但会引起较明显的下垫面热通量的变化。凝华潜热释放显著地增加了大气稳定度,造成对流和下垫面热通量的减弱,从而导致地面降水减小10.11%。碰冻潜热释放也使得大气稳定度增加,不利于中尺度对流系统对流的发展,区域累积降水量减小2.2%。融化潜热的冷却效应,使得融化层以下的大气降温,从而增加了低层大气的不稳定性,有利于海面热通量的输送,导致MCS降水增加4.1%。因此,冰相相变潜热对降水的影响主要是通过影响大气环境稳定,进而影响洋面感热通量和潜热通量的垂直输送和对流的发展,导致区域降水改变。  相似文献   

12.
针对2005年7月22日的发生于华北的暴雨中尺度对流系统,在用中尺度ARPS模式数值模拟和分析云场、动力场以及微物理过程释放的潜热垂直分布和作用特征的基础上,通过改变主要微物理过程潜热做敏感性数值试验,研究和分析了潜热对云系发展演变、云系宏观动力场、水汽场、云场和降水的影响,总结出云暖区潜热的影响途径。结果表明,在对流云团中,5000 m以上微物理过程起加热作用,以下起冷却作用。不同物理过程潜热加热的云层高度不同:高层起加热作用的主要为水汽凝结、云冰初生和雪凝华增长、霰撞冻云水过程;中层起加热/冷却作用的主要为水汽凝结、霰/雹融化过程;低层雨水的蒸发过程起冷却作用。微物理过程潜热通过影响云系和降水发展过程、云系动力场,进而影响水汽场、云场和降水。忽略霰/雹融化潜热,相当于增加云系暖区潜热,促进了低层气旋性环流的形成,增强了低层动力场的辐合,使得低层辐合区增多、增强;中低层水汽通量辐合区增多、面积扩大,明显地促进了对流云系的发展,增大了含水量和覆盖范围,云系的降水量显著增加,强降水区覆盖范围扩大。即使减少20%的凝结潜热,云系的发展也受到极大抑制,没有气旋性环流生成,低层辐合区缩小、强度降低,水汽通量辐合区也同样缩小、强度降低,云系对流发展减弱、含水量降低,因此,降水量大为减小,降水范围也显著缩小。此外,微物理过程潜热还影响到此次中尺度对流系统发展演变过程,改变了云系的形态、影响到系统的移动和系统中对流云团的发展强度和分布情况。  相似文献   

13.
本文使用常规观测资料、四川省自动站降水资料、0.1°×0.1°的FY-2E云顶亮温资料和1°×1°的NCEP再分析格点资料对2012年7月20~23日四川东部强降水过程的主要影响系统、水汽源地、动力、热力条件等进行诊断分析,结果表明:(1)本次暴雨过程中伴有500hPa高空槽东移至四川并向南加深发展,槽后冷空气与槽前暖湿气流在四川汇合,低层有低涡发展,配以高低空急流耦合的有利形势;(2)暴雨前期水汽主要来源于孟加拉湾,随着南海台风西进,其外围偏东气流向西输送增强,西南暖湿气流北上受到抑制,使得雨带南压;(3)降水以对流性降水为主,暴雨期间水汽凝结潜热在对流层中低层起主要作用,强上升运动将低层的潜热加热向上输送,形成高空的热源中心,强降水期间大气的加热是与大气的垂直上升运动密切相关的;在本次暴雨过程垂直输送项是视热源Q1和视水汽汇Q2的主要贡献者,尤其是在强降水阶段;(4)在低涡在发展阶段,低层正涡度局地变化项首先得到发展,在低涡减弱阶段,正涡度局地变化项的峰值中心由低层向中低层抬升;(5)中尺度对流系统与小时降水分布一致,MCS的发展是触发降水的重要因素之一。   相似文献   

14.
弱冷空气与台风残留低压相互作用对一次大暴雨过程的影响   总被引:16,自引:4,他引:12  
杜惠良  黄新晴  冯晓伟  滕代高 《气象》2011,37(7):847-856
本文利用多普勒雷达资料、中尺度自动站雨量资料,结合经过控制试验的高精度数值模拟输出的诊断物理量,研究了2010年"莫兰蒂"台风低压环流在浙江中北部地区引发的大暴雨天气过程的物理原因。结果表明:这次大暴雨过程主要由"莫兰蒂"残留云系、副高边缘的暖湿气流和北方的弱冷空气共同影响产生,降水回波为积层混合性降水回波,降水效率高;杭州地区多个中小尺度系统的相互作用使得对流云团在该地区持续加强和发展,而强降水中心附近风速的加强和面积的扩大,使整个降水时段内不断有水汽输入降水区,为降水提供了丰沛的水汽条件;对流层中低层正的垂直螺旋度,低层负湿位涡区和中高层正湿位涡区的配置形成的不稳定能量在弱冷空气入侵时有利于造成较强烈的中尺度上升运动,加上降水引起的潜热释放对中高层空气的加热作用,从而能够形成持续的抽吸作用。这些条件能引起持续性的强降水,导致了杭州地区暴雨的发生。研究此次大暴雨过程,对预报有一定的指示意义。  相似文献   

15.
王叶红  赵玉春 《大气科学》2020,44(5):935-959
利用中尺度数值模式WRF v3.8中的YSU、MYJ、QNSE、ACM2、UW、GBM、Boulac七种不同边界层参数化方案,采用高分辨率(1.33 km)数值试验的方法研究了不同边界层方案对模拟台风“莫兰蒂”(1614)登陆减弱阶段的移动路径、强度、结构、降水量、近地层有关物理量场分布等方面的影响,结果表明:(1)“莫兰蒂”台风登陆减弱阶段,不同边界层方案对台风路径、强度、降水量模拟影响显著,24 h内模拟台风路径、最低气压、最大风速及24 h累积降水量极值的最大差异分别达80 km、11 hPa、27 m s?1及241 mm;(2)Boulac方案模拟台风路径与实况最为接近,GBM、YSU和MYJ方案分别次之,ACM2和UW方案再次之,而QNSE方案最差;UW和QNSE方案模拟的最低气压以及MYJ和QNSE方案模拟的最大风速与观测最为接近;不同边界层方案均模拟出台风登陆阶段最低气压逐渐升高以及其升高速率在台风登陆后大于登陆前的特征,这与实况一致,但台风登陆前各方案模拟最低气压升高速度均大于实况,而台风登陆后却又不及实况;(3)Boulac方案模拟的24 h降水分布、强降水落区、结构、强度和各量级降水TS评分均最优,MYJ方案次之;而QNSE、UW和ACM2方案雨带向西北方向推进过快,各量级降水TS评分均较差;(4)综合台风路径、强度和降水模拟,Boulac和MYJ方案相对最优,其中Boulac方案在台风路径和降水模拟上更优,而MYJ方案在台风强度模拟上更优;YSU和GBM方案次之,而QNSE、UW和ACM2方案相对较差;(5)不同边界层方案计算的近地层潜热通量、感热通量显著不同,进而影响台风路径、强度、降水量模拟存在显著差异。比较而言,QNSE方案潜热通量相对异常偏高,MYJ和Boulac方案量值适中,其余方案相对偏低;QNSE方案感热通量相对略偏高,MYJ方案适中,其他方案则相对显著偏低;(6)不同边界层方案模拟降水区边界层热、动力结构显著不同,其中Boulac方案具有较明显优势,尤其是对日间边界层结构的模拟。  相似文献   

16.
邢书强  李小凡 《气象科学》2021,41(4):427-440
以2010年6月19日发生在浙闽赣地区的一次强降水过程为例,利用中尺度WRF模式进行模拟,用模拟资料对该地区降水收支特征和冰云热力作用进行分析。依据局地水汽/热量变化项、水汽/热量辐合辐散项和云凝物辐合辐散项这3个因子可将降水分为8类,其中局地水汽变干和大气变暖、水汽辐合和热量辐散以及云凝物辐合时,降水强度(雨强)最强,而局地水汽变湿和大气变冷、水汽辐合和热量辐散以及云凝物辐合时,降水覆盖率最大。冰云热力效应包括辐射和潜热两部分。基准试验与敏感性试验对比分析表明冰云辐射减弱降水,而冰云潜热增强降水。热量收支对比分析发现冰云辐射造成辐射冷却的减弱在对流层中低层随高度增加,减弱大气不稳定和降水;而冰云潜热造成潜热增强在对流层中高层随高度减小,增强大气不稳定和降水。  相似文献   

17.
童颖睿  郑远东  郑峰 《气象科技》2023,51(5):681-692
2020年第4号台风“黑格比”在浙南登陆后过境北雁荡山期间在山区引发了特大暴雨。基于中尺度数值模式WRFV4.0.2对台风进行高分辨率数值模拟,分析北雁荡山地形对此次台风暴雨的作用,并设置了升降地形敏感性试验。结果表明:数值试验较好地模拟了台风移动及特大暴雨的落区和强度,台风大风区明显不对称分布,台风登陆后第一、四象限过境山区,其东侧强偏南气流向山区输送了充足水汽。台风登陆前山区低空存在一条由台风内核拖曳出的狭长螺旋辐合带,水汽通量辐合与风场辐合相一致。台风眼墙过境时沿着降水中心的迎风坡有强烈上升运动,动力条件极好,水汽输送带由近地面向对流层低层延展,山区有零星对流单体触发加强。台风后部环流影响时在高海拔山区风速减弱、绕流激发了中尺度低涡,强降水中心迎风坡上出现持续性、停滞不动的强正涡度中心,是特大暴雨发生的主要原因。地形敏感性试验中无地形时降水减幅40%~50%,地形高度翻倍降水增幅超过60%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号