首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 128 毫秒
1.
灰化法和微波消解法作为地电化学泡塑样品的预处理方法适用于多数元素,但二者都存在局限性,如灰化法的高温加热过程会造成As、Hg等元素的损失影响测定结果,微波消解法则因用样量小(0.1 g),存在样品代表性和检出限方面的问题。湿法消解是一种传统的样品预处理方法,具有消解完全、元素损失量低、样品代表性好等优点,可以有效解决以上两种方法的不足。但因为加入高氯酸消解泡塑(有机物)样品过程中易爆炸和酸空白等问题,一直没有在泡塑样品的预处理中得到推广。本文选取内蒙古洛恪顿热液型铅锌多金属矿床一条地电化学勘查剖面,用20 m L硝酸+5 m L高氯酸和5 m L王水对泡塑样品(约0.5 g)进行预处理,氢化物发生原子荧光光谱法和高分辨电感耦合等离子体质谱法测定元素含量。结果表明:大多数元素的空白含量都比较低,地球化学剖面图上有良好的异常显示;湿法消解处理泡塑样品是可行的,分析泡塑样品主要使用这种预处理方法。  相似文献   

2.
地电化学泡塑载体分析测试中一直缺乏有效的分析质量监控方法,影响了方法技术的应用推广。针对应用较广泛的泡塑预处理方法——灰化法,实验了在空白泡塑中加入标准溶液的方法,对分析质量进行监控。结果表明,使用这种方法应该可以解决Au的分析质量监控问题,实验的分析准确度甚至可满足多目标区域地球化学调查中土壤样品分析质量监控要求;而针对Cu、Ni、Pb、Zn等,在灰化过程中存在不同程度的元素损失,暂时不适合使用该方法。  相似文献   

3.
地电化学(泡塑)样品中金与锑的预处理   总被引:3,自引:1,他引:3  
通过模拟实验获得附载金、锑的泡塑样品,并对其进行了硫脲解脱法、灰化法、硝酸加氧化剂消解法的比较实验,确定采用硫脲解脱法是地电化学(泡塑)样品金、锑的最佳解脱方法,通过正交实验及其结果分析确定了最佳实验条件。利用硫脲解脱一原子吸收光谱法对某隐伏金锑矿床82件地电化学(泡塑)样品进行了测试,分析结果显示出有明显的金、锑异常,指示了重要的勘探靶区。  相似文献   

4.
沈宇  张尼  高小红  李皓  马怡飞 《岩矿测试》2014,33(5):649-654
地质样品中多种元素的分析,通常采用高压密封消解电感耦合等离子体质谱法(ICP-MS),而应用于测定地球化学样品中的V、Cr、Ni、Ge、As等元素,影响分析准确度的主要原因有:样品前处理方面,高压密封罐会释放Cr和Ni污染样品,同时Ge和As属于易挥发元素容易造成损失;质谱测定方面,多原子分子离子会产生干扰。本文针对两方面的干扰因素,对比了微波消解硝酸提取、微波消解王水提取、高压密封硝酸复溶、高压密封王水复溶四种前处理方法中待测元素的溶出效果以及污染或损失情况。结果表明,采用微波消解替代高压密封罐消解可消除引入的Cr、Ni污染,避免了Ge、As挥发损失,同时微波消解的时间短。而采用硝酸提取,由于避免了氯的引入,分析效果优于王水提取。且使用八极杆ICP-MS氦气碰撞模式消除了样品基体中的氯多原子分子离子干扰(如37Cl14N对51V干扰,35Cl16OH对52Cr干扰,35Cl37Cl对72Ge干扰以及40Ar35Cl对75As干扰等)。应用微波消解硝酸提取、ICP-MS测定岩石、水系沉积物和土壤国家标准物质,V、Cr、Ni、Ge、As的检出限分别为1.09、0.19、0.55、0.02、0.50μg/g,精密度(RSD)4%,而采用高压密封消解、ICPMS测定V、Cr、Ni的检出限为3.48、13.09、21.67μg/g(Ge和As由于挥发无法用此法检测)。运用微波消解硝酸提取-ICP-MS氦气碰撞模式测定地球化学样品中V、Cr、Ni、Ge、As,简化了分析流程,样品消解时间仅2 h,相比于高压密封方法(消解时间48 h)具有消解快速、多元素同时测定、检出限低的特点。  相似文献   

5.
采用干法灰化和微波消解两种样品分解方法处理植物试样,用电感耦合等离子体发射光谱法测定样品中铝、钡、钙、铜、钾、镁、钠、铁等22个主、次量元素的含量,用两种前处理方法对国家一级标准物质进行测定,比对测定值与标准值,验证两种方法的准确度和精密度。结果表明,不同的样品分解方法对各元素的测定结果会产生不同程度的影响。选择适宜的分解方法可以大大提高植物样品中铝、铁、硫等元素测定结果的准确度。干法灰化和微波消解两种前处理方法的精密度(RSD,n=11)均小于5%。  相似文献   

6.
鲁照玲  胡红云  姚洪 《岩矿测试》2012,31(2):241-246
分别采用HNO3-HF、HNO3-HF-HCl和HNO3-HF-H2O2三种消解体系,通过微波和PTFE密封罐电热板对土壤标准物质进行前处理,采用电感耦合等离子体质谱(ICP-MS)对样品中的重金属元素Cr、Ni、Cu、Zn、As、Cd和Pb进行定量分析。探讨了前处理试剂(主要为HNO3、HCl和HF)以及土壤基体效应对Cr、Ni、Cu、Zn、As、Cd和Pb定量分析的影响。研究结果表明,前处理试剂对Cr、Ni、Cu、Zn、As、Cd和Pb的定量分析具有不同程度的影响;对于土壤基体,在三种消解体系下均可观察到基体抑制效应;采用PTFE密封罐电热板消解方法前处理,待测元素及相同元素不同同位素的方法空白和检出限均较低,效果整体优于微波消解法。特别是HNO3-HF-HCl消解体系,通过选用52Cr、60Ni、65Cu、66Zn、75As和206Pb等同位素,重金属元素Cr、Ni、Cu、Zn、As、Cd和Pb的测定值均能保证在标准值的允许误差范围内,可以满足大批量土壤样品中重金属元素同时定量分析的需要,为高效准确地开展土壤的风险评估以及为土壤的修复治理提供科学依据。  相似文献   

7.
海洋沉积物常用的分析方法如敞开消解或高压密闭消解结合电感耦合等离子体质谱(ICP-MS)或电感耦合等离子体发射光谱(ICP-OES)测定,粉末压片或熔片结合X射线荧光光谱法(XRF)测定,分别存在消解不完全、速度慢、检出限高等缺点,导致样品前处理效率低、待测元素少。针对上述问题,本文采用偏硼酸锂为熔剂分解样品,5%硝酸浸取,用ICP-MS法进行测定,建立了一种快速分析海洋沉积物中48种元素的方法。使用海洋沉积物国家标准物质作为高点绘制标准工作曲线,确定了助熔剂偏硼酸锂用量、稀释倍数、各待测元素的分析同位素及内标元素、仪器测定模式及个别元素的干扰校正方程等,得到最佳分解条件及测定条件。结果表明:由于高温损失,P、As、Se、Cd、Hg等元素无法得到准确结果,可改用微波消解等方式前处理后再进行测定;Cu、Zn、Cr、Ni、Co等共计48种元素使用本法均能得到准确结果,各元素方法精密度(RSD)均小于9.7%。本方法应用于分析海洋沉积物国家标准物质GBW07333、GBW07314、GBW07335、GBW07336,测定值和认定值相符;分析海洋沉积物实际样品,各元素加标回收率介于83.6%~118.6%。本方法可测定元素多,极大提高了分析效率,适合大批量样品分析。  相似文献   

8.
本文采用改装家用微波炉及自制聚四氟乙烯消化罐,用HNO_3-H_2O_2密闭增压消解样品,用火焰AAS测定Ca、Mg、Fe、Mn、Cu、Zn,用火焰光度法测定K、Na。本法简便、省时,溶样耗能低,对环境污染小。 测定茶叶中的微量元素,首先要考虑的是样品溶液的制备。目前大多数采用干法灰化或湿法消解试样。干法易引起易挥发元素的损失,所得灰分易结成硬块粘附在坩埚底,有时无机盐将炭粒包藏,使灰化不完全;湿法消解样品时,容易引起样品沾污或痕量元素的损失,且不易消解完全。  相似文献   

9.
粉煤灰中镓元素含量为12~230μg/g,测定粉煤灰中的镓对实现粉煤灰高附加值利用具有重要的意义。传统敞口酸溶法作为样品的预处理方法存在局限性,如需使用大量氢氟酸,对分析仪器腐蚀大,溶样时间长,在开放容器中易造成元素损失和环境污染。微波消解法具有消解完全、元素损失量少、消解时间短等优点,可以有效解决酸溶法的不足。本文选取内蒙古某电厂采集的粉煤灰,采用硝酸-氢氟酸-盐酸-高氯酸微波消解法对粉煤灰样品进行预处理,电感耦合等离子体发射光谱法(ICP-OES)测定元素含量。结果表明:使用硝酸-氢氟酸-盐酸-高氯酸(5∶1∶5∶1),消解温度190℃,消解时间30min,微波功率1400W时,镓被浸出完全。方法检出限为0.004mg/L,相对标准偏差(RSD)为1.7%,加标回收率为95.1%~100.9%。本方法在体系中引入盐酸,减少了氢氟酸的用量,显著缩短了除氟时间,降低了对分析仪器的损害,且操作方便,可应用于粉煤灰中微量元素镓的测定。  相似文献   

10.
铁矿石中Cr、As、Cd、Hg和Pb不仅影响冶炼设备和产品性能,同时污染环境。文章以铁矿石标准物质为研究对象,对电感耦合等离子体质谱法(ICP-MS)测定铁矿石中Cd、As、Cr、Hg和Pb等5种元素进行了适用性探讨。结果表明,与常规的单元素原子吸收光谱法或多元素同步分析电感耦合等离子体发射光谱法相比,用微波消解方法处理铁矿石,具有样品消耗量少(0.1000±0.0200)g、消解用酸少(2.5 mL HCl+0.5 mL HF+1.0 mL HNO3)、排放降低、节约成本等优点,且无需配制铁底液,无需添加任何掩蔽剂,质谱干扰小,适用于分析Cr含量为5.5×10-10~2.5×10-4,As含量为7.6×10-10~1.9×10-4,Cd含量为4.5×10-11~5.5×10-6,Hg含量为1.88×10-9~1.9×10-7,Pb含量为1.2×10-10~3.2×10-5的铁矿石样品。优化后的前处理方法节约了能源、试剂和样品消耗,降低了二次污染和有效损失。  相似文献   

11.
测定有机样品中元素含量和同位素时,处理样品常用的方法有干灰化法和湿法两种.目前,测定样品中Cu、Zn、Fe同位素时,多采用湿法处理样品.相对于湿法处理样品,干灰化法溶样迅速、耗酸量少,适合处理大量样品,但高温灼烧过程可能会导致样品中Cu、Zn、Fe同位素的分馏.本研究利用海州香薷植株,以湿法为基础,对干灰化法和湿法处理...  相似文献   

12.
植物样品中无机元素分析的样品前处理方法和测定技术   总被引:11,自引:5,他引:6  
植物样品中无机元素的分析测定在环境地球化学和生物地球化学的研究中起着重要作用。植物样品中元素含量一般较低,须选用科学合理的前处理技术和灵敏度高、精密度好、检出限低的测定方法。本文针对植物样品前处理方法和无机元素分析测定技术的研究进展、优势与不足进行评述。前处理方法主要根据样品和待测元素的性质进行选择:干法灰化所用试剂少、空白值低,但组织致密型的样品不易灰化完全、高温下易造成元素挥发损失;湿法消解样品消解较为完全,但试剂消耗大、空白值高、操作繁琐;微波消解可以防止部分易挥发元素损失,用酸量少、消解速度快,但称样量相对较小,不适于需要大称样量的样品分析。几乎所有针对元素分析的仪器分析技术都可以用于植物样品分析,主要根据仪器适用的元素、必要的干扰校正以及基体改进等方面进行选择:电感耦合等离子体质谱法可同时测定植物样品中40种以上的元素,高分辨质谱的检出限可达fg/mL;电感耦合等离子体发射光谱法适用于某些植物样品中含量较高的P、K、Na等元素的测定;原子吸收光谱法可分析元素达70余种,是普及程度最高的仪器分析技术之一;原子荧光光谱法与氢化物发生技术的联用,在元素含量较低的植物样品分析中技术优势更加明显;新兴的激光诱导击穿光谱技术已被应用于植物样品分析,无需复杂的样品前处理,操作简单快速,可实现原位、在线、实时、多元素同时检测;其他选择性强、灵敏度高的分析技术,满足了一些特定元素不能用常规分析技术测定的需求。当前主流分析技术的样品前处理方法都存在着缺陷,固体进样技术将成为植物样品分析领域的发展方向之一。  相似文献   

13.
采用HNO3-HClO4-HF常压消解、HNO3-H2O2-HF高压密闭消解、HNO3-H2O2微波消解,干法灰化后残渣用HNO3-HF-HClO4溶解等四种方法对植物样品进行前处理,使用电感耦合等离子体质谱(ICP-MS)对植物样品中的27种元素进行定量分析,探讨了不同前处理方法对ICP-MS测定植物样品中微量元素的影响。分析结果表明: HNO3-HClO4-HF常压消解使用大量试剂,污染环境,造成空白值高;在常压体系中HClO4的加入能提高样品的消解效率,但赶酸不完全,会造成复合离子对钒和砷的干扰;干法灰化过程中某些元素(硼、汞等)会损失;常压消解和高压密闭消解中加入HF能有效地提高铍、稀土、钇、钛、锑、铀等元素的回收率,但在蒸干赶HF的过程中,会造成硼和汞的损失,并且钢套的生锈会造成铬、镍空白值高。尽管没有一种方法能适用于所有元素的分析,但相比较而言,HNO3-H2O2微波消解体系操作简单,大部分元素(除铍、钛、锑、铋、稀土)能得到满意的结果,精密度(RSD)均小于10%(n=10),相对误差(RE)为-4.6%~13.6%。  相似文献   

14.
微波消解法是处理生物样品的主要技术,但存在处理效率不高等问题还有待进一步研究。本文采用高压低通量(12位)和低压高通量(41位)微波消解法对蔬菜样品进行前处理,电感耦合等离子体质谱法(ICP-MS)测定砷、镉、铬、铜、镍、铅和锌,氢化物发生-冷原子荧光光谱法(HG-CAFS)测定汞。采用两种前处理方法消解标准物质GBW 10010(大米)和GBW 10014(圆白菜),ICP-MS的测定值与标准值基本吻合,全流程加标回收率为91.5%~103.8%;用于测定GBW 10010和GBW 10014,因GBW 10010中铬、铅、砷,GBW 10014中砷的含量较低,测定值与标准值的相对误差较大;其余元素的测定值与标准值基本相符,表明两种前处理方法均能满足分析要求。但在保证测定结果质量的前提下,低压高通量微波消解处理样品,试剂用量少,单次样品处理量大,更加适合大批量生物样品的前处理。  相似文献   

15.
随着常规镍来源的硫化镍矿资源的日益枯竭,可直接生产氧化镍、镍锍和镍铁等产品的红土镍矿倍受关注。对于红土镍矿中主量、次量、痕量元素的检测,相同的检测项目存在多种测试方法,且部分相同原理的测试方法存在细节上的差异,使得检测者选择合适的检测方法变得困难。本文综述了近年来红土镍矿中24种元素测定的样品前处理方式及分析技术研究进展。样品前处理方式依据目标元素及后续的分析方法进行选择,其中酸溶法和碱熔法用途最广。酸溶法引入的盐分少,操作简单,但是分解过程中易导致挥发元素As、Sb、Bi、Hg的损失,Cr易随高氯酸冒烟损失。碱熔法分解能力强,适合分析Cr、Si、全铁等项目,但会引入大量的盐类和因坩埚材料损耗而带入其他杂质,给后续分析带来困难。红土镍矿的分析技术依据实验室条件及目标元素的性质和浓度进行选择。电感耦合等离子体发射光谱法(ICP-AES)是主量、次量元素的主要分析方法,适合于分析含量为10-5~30%级别的金属元素;X射线荧光光谱法主要用于分析含量为10-3~1级别的元素,尤其适合于测定Al、Si、Ti、V和P,由于该方法的准确性依赖于一套高质量的标准样品,故更适合炉前检测或检测大批红土镍矿样品。电感耦合等离子体质谱法(ICP-MS)最适合于分析10-4含量以下的重元素,特别是稀土和贵金属元素。原子吸收光谱法(AAS)适合于分析10-4~10-2级别的Ca、Mg、Ni、Co、Zn、Cr、Mn等低沸点、易原子化元素。分光光度法主要用于分析Ni和P。原子荧光光谱法(AFS)主要用于分析As、Bi、Sb等易形成气态氢化物的元素。容量法主要用于分析Al、Fe、Mg和Si O2等主含量元素。尽管AAS、分光光度法、AFS法和容量法检测周期长,但所用仪器为实验室常规配置,可满足缺乏相应大型仪器实验室的日常检测。本文认为,针对各种检测方法的适用性及存在问题,应从开发微波消解法、固体进样直接测汞法、ICP-MS法以及Cr与其他元素同时分析的快速分析方法等方面开展研究,建立灵敏、准确的检测方法,从而更好地服务于红土镍矿的贸易、检验和综合利用。  相似文献   

16.
A dry ashing method is commonly used to remove organic material from samples prior to geochemical analysis. In the course of this study, the Cd isotope ratios of a series of soil and plant reference materials and samples were studied to evaluate the effect of the dry ashing method on measurement results of Cd isotope ratios. The samples were pre‐treated using the dry ashing method and high‐pressure bomb for comparison. The results show that the digestion using high‐pressure bombs did not lead to Cd loss, but using the dry ashing method would cause different proportions of Cd loss. The whole range of Cd isotope difference between two methods was from ?0.07‰ to 3.01‰. There was also an obvious difference in measured Cd isotope ratios from the same leaf sample pre‐treated independently by the dry ashing method, indicating that the amount of Cd loss and the effect on Cd isotope measurement during dry ashing is related to the properties of the samples. Therefore, dry ashing may not be appropriate for the removal of organic material in Cd isotope ratio measurement, especially for samples with high organic contents. The δ114/110Cd values of reference materials NIST SRM 1573a and GSD‐30 are reported for the first time in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号