首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   9篇
测绘学   4篇
大气科学   1篇
地球物理   24篇
地质学   14篇
海洋学   36篇
天文学   2篇
自然地理   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   5篇
  2011年   11篇
  2010年   5篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   2篇
  2004年   6篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1994年   2篇
  1992年   2篇
排序方式: 共有84条查询结果,搜索用时 234 毫秒
11.
Detailed stratigraphic analyses of sediments deposited in Lake Botjärnen, a small boreal forest lake in the shield terrain of central Sweden, clearly reflect progressively increasing human impact on terrestrial and aquatic ecosystems following settlement and establishment of an iron industry in the 17th century. Rising frequencies of pollen and spores from light-demanding plants provide evidence of extensive forest clearance for charcoal and timber production, which peaked in the early 20th century. An associated increase in catchment erosion is reflected by changing carbon and nitrogen elemental content and carbon–isotope composition of sediment organic matter and by increased magnetic susceptibility of the sediments. Records of air-borne pollutants (lead, zinc and sulphur) can be correlated to the development of local and regional mining and metal industry as inferred from historical accounts. Rapid recession of the iron industry led to re-forestation and recovery of the aquatic nutrient status to pre-industrial conditions over the past 100 years. The chronology of the sediment succession, which is based on 210Pb and 137Cs radionuclide data in combination with radiocarbon dating, is confirmed by historical lead pollution trends established for the region.  相似文献   
12.
The distribution of particulate matter within river channels, including sediments, nutrients and pollutants, is fundamental to the survival of aquatic organisms. However, the interactions between flow and sediment transport at the patch scale of river systems represents an under‐researched component of physical habitat studies, particularly those concerning the characterization of ‘physical biotopes’ (riffles, runs, pools, glides). This paper describes a field methodology for exploring the transfer of particulate matter at small scales within river channels, which may be used to aid hydraulic habitat characterization. The field protocol combines field measurement of high frequency flow properties, to characterize hydraulic habitat units, and deployment of spatial arrays of turbidity probes, to detect the passage of artificially‐induced sediment plumes through different biotope units. Sediment plumes recorded by the probes are analysed quantitatively in the manner of the flood hydrograph, and qualitative inferences are made on the dominant mixing processes operating within different parts of the channel. Relationships between the nature of spatio‐temporal hydraulic variations within glide, riffle and pool biotopes, and the character and mixing behaviour of sediment plumes within these habitat units are identified. Results from these preliminary experiments suggest that investigating and characterizing the transfer and storage of sediments, nutrients and pollutants within and between different biotopes is a viable avenue for further research, with potential to contribute to improved physical habitat characterization for river management and habitat restoration. The experiments are also an illustration of the value of neglected synergies between process geomorphology, ecology and river hydraulics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
13.
Light-induced reduction of dissolved and particulate Fe(III) has been observed to occur in the surface waters of the acidic mine pit lake of San Telmo (143,600 m2, pH 2.8, Fetotal = 2.72 mM). This photochemical production of Fe(II) is directly related to the intensity of solar radiation and competes with biologically catalyzed reactions (i.e., bacterial re-oxidation of Fe(II)) and physical processes (including ionic diffusion, advection, and convection, which tend to homogenize the epilimnetic concentration of Fe(II) at every moment). Therefore, diel cycles of Fe(II) concentration are observed at the lake surface, with minimum values of 10–20 μM Fe(II) (0.35–0.70% Fetotal) at the sunrise and sunset, and maximum values of 90 μM Fe(II) (3.2% Fetotal) at midday in August 2005. Field and experimental work conducted in San Telmo and other pit lakes of the Iberian Pyrite Belt (IPB) (pH 2.3–3.1, Fetotal = 0.34–17 mM) indicate that the kinetics of the photoreductive reaction is zero-order and is independent of the Fe(III) concentration, but highly dependent on the intensity of solar radiation and temperature. Experimental work conducted with natural Fe(III) minerals (schwertmannite, goethite, and lepidocrocite) suggests that dissolved organic matter is an important factor contributing to the photochemical production of Fe(II). The wavelengths involved in the photoreduction of Fe(III) include not only the spectrum of UV-A radiation (315–400 nm), but also part of the photosynthetically active radiation (PAR, 400–700 nm). This finding is of prime importance for the understanding of the photoreduction processes in the pit lakes of the IPB, because the photo-reactive depth is not limited to the penetration depth of UV-A radiation (upper 1–10 cm of the water column depending on the TDS content), but it is approximately equal to the penetration depth of PAR (e.g., first 4–6 m of the water column in San Telmo on July 2007); thus, increasing the importance of photochemical processes in the hydro(bio)geochemistry of pit lakes.  相似文献   
14.
Fluvial dissolved Fe concentrations decrease upon mixing with seawater, resulting in the formation of Fe-floccules. However, a clear understanding of the fate of these floccules has yet to be established. Assessing how tidal processes affect the formation of Fe-colloids in the Leirárvogur estuary, SW Iceland, is an important step in understanding the formation and potential deposition of estuarine Fe-rich minerals within this estuarine system. The Leirárvogur estuary drains predominately Fe-rich basalt, increasing the likelihood of detecting changes in Fe-phases. Fluvial waters and local lake waters that drain into the estuary were compared and the effects of seasonal changes were considered, in an attempt to understand how varying end-members and external factors play a role in Fe-rich mineral formation. Aqueous and colloidal Fe concentrations were found to be greater towards the head of the Leirárvogur estuary, suggesting that potential Fe-rich minerals and complexes are forming at sites of fluvial input. Increasing suspended colloidal Fe towards the estuary mouth suggests that Fe-colloids are readily transported seaward.  相似文献   
15.
There has been more attention to phytoplankton dynamics in nutrient-rich waters than in oligotrophic ones thus requiring the need to study the dynamics and responses in oligotrophic waters. Accordingly, phytoplankton community in Blanes Bay was overall dominated by Prymnesiophyceae, remarkably constant throughout the year (31 ± 13% Total chlorophyll a, Tchl a) and Bacillariophyta with a more episodic appearance (20 ± 23% Tchl a). Prasinophyceae and Synechococcus contribution became substantial in winter (Prasinophyceae = 30% Tchl a) and summer (Synechococcus = 35% Tchl a). Phytoplankton growth and grazing mortality rates for major groups were estimated by dilution experiments in combination with high pressure liquid chromatography and flow cytometry carried out monthly over two years. Growth rates of total phytoplankton (range = 0.30–1.91 d−1) were significantly higher in spring and summer (μ > 1.3 d−1) than in autumn and winter (μ ∼ 0.65 d−1) and showed a weak dependence on temperature but a significant positive correlation with day length. Microzooplankton grazing (range = 0.03–1.4 d−1) was closely coupled to phytoplankton growth. Grazing represented the main process for loss of phytoplankton, removing 60 ± 34% (±SD) of daily primary production and 70 ± 48% of Tchl a stock. Chla synthesis was highest during the Bacillarophyceae-dominated spring bloom (Chl asynt = 2.3 ± 1.6 μg Chl a L−1 d−1) and lowest during the following post-bloom conditions dominated by Prymnesiophyceae (Chl asynt = 0.23 ± 0.08 μg Chl a L−1 d−1). This variability was smoothed when expressed in carbon equivalents mainly due to the opposite dynamics of C:chl a (range = 11–135) and chl a concentration (range = 0.07–2.0 μg chl a L−1). Bacillariophyta and Synechococcus contribution to C fluxes was higher than to biomass because of their fast-growth rate. The opposite was true for Prymnesiophyceae.  相似文献   
16.
A total of 445 pockmarks were observed on the upper continental slope of the northwest corner of the Iberian Peninsula (the Ortegal Spur area) by swath bathymetric and ultrahigh resolution seismic data. The pockmarks are U-, V- and W-shaped and have terraces or indentations in cross-section, and are dish-shaped (circular to oval) in plan view. They occur on the surface of the seabed and buried within the Plio-Quaternary and Neogene sediments. Four types of pockmarks were identified and mapped on the basis of their plan-view and cross-section morphology: regular, irregular, asymmetric and composite. The concentration of pockmarks is attributed to seepage of fluids migrating up-dip from deeper parts of the sedimentary basin. A linear high-density concentration with a NNW to N, NE and ESE trend of pockmarks is observed above inferred basement faults that do not affect the Quaternary succession. These pockmarks are thus caused by seepage of thermogenic gas and/or other pore fluids from deeper Late Cretaceous units, and their distribution may help to improve our understanding of the fluid system and migration regime in this part of the Galicia continental margin.  相似文献   
17.
18.
This paper presents a computational model for mapping the regional 3D distribution in which seafloor gas hydrates would be stable, that is carried out in a Geographical Information System (GIS) environment. The construction of the model is comprised of three primary steps, namely: (1) the construction of surfaces for the various variables based on available 3D data (seafloor temperature, geothermal gradient and depth-pressure); (2) the calculation of the gas function equilibrium functions for the various hydrocarbon compositions reported from hydrate and sediment samples; and (3) the calculation of the thickness of the hydrate stability zone. The solution is based on a transcendental function, which is solved iteratively in a GIS environment.The model has been applied in the northernmost continental slope of the Gulf of Cadiz, an area where an abundant supply for hydrate formation, such as extensive hydrocarbon seeps, diapirs and fault structures, is combined with deep undercurrents and a complex seafloor morphology. In the Gulf of Cadiz, the model depicts the distribution of the base of the gas hydrate stability zone for both biogenic and thermogenic gas compositions, and explains the geometry and distribution of geological structures derived from gas venting in the Tasyo Field (Gulf of Cadiz) and the generation of BSR levels on the upper continental slope.  相似文献   
19.
Multibeam bathymetry, high (sleeve airguns) and very high resolution (parametric system-TOPAS-) seismic records were used to define the morphosedimentary features and investigate the depositional architecture of the Cantabrian continental margin. The outer shelf (down to 180–245 m water depth) displays an intensively eroded seafloor surface that truncates consolidated ancient folded and fractured deposits. Recent deposits are only locally present as lowstand shelf-margin deposits and a transparent drape with bedforms. The continental slope is affected by sedimentary processes that have combined to create the morphosedimentary features seen today. The upper (down to 2000 m water depth) and lower (down to 3700–4600 m water depth) slopes are mostly subject to different types of slope failures, such as slides, mass-transport deposits (a mix of slumping and mass-flows), and turbidity currents. The upper slope is also subject to the action of bottom currents (the Mediterranean Water — MW) that interact with the Le Danois Bank favouring the reworking of the sediment and the sculpting of a contourite system. The continental rise is a bypass region of debris flows and turbidity currents where a complex channel-lobe transition zone (CLTZ) of the Cap Ferret Fan develops.The recent architecture depositional model is complex and results from the remaining structural template and the great variability of interconnected sedimentary systems and processes. This margin can be considered as starved due to the great sediment evacuation over a relatively steep entire depositional profile. Sediment is eroded mostly from the Cantabrian and also the Pyrenees mountains (source) and transported by small stream/river mountains to the sea. It bypasses the continental shelf and when sediment arrives at the slope it is transported through a major submarine drainage system (large submarine valleys and mass-movement processes) down to the continental rise and adjacent Biscay Abyssal Plain (sink). Factors controlling this architecture are tectonism and sediment source/dispersal, which are closely interrelated, whereas sea-level changes and oceanography have played a minor role (on a long-term scale).  相似文献   
20.
The Pleistocene sedimentary growth pattern of the northern Catalonia continental shelf is characterized by the vertical stacking of seaward downlapping regressive deposits. These deposits are characterized by a progradational development, with oblique clinoforms of low angle in the middle continental shelf, that become more inclined seaward in the outer continental shelf and shelfbreak. Eustatic sea level fluctuations controlled the development of this sedimentary pattern, whereas sediment supply conditioned the nonuniform progradation along the continental shelf and subsidence due to both sediment loading and tectonics controlled its preservation through and along the continental shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号