首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   22篇
  国内免费   24篇
测绘学   1篇
大气科学   67篇
地球物理   7篇
地质学   10篇
海洋学   2篇
综合类   3篇
自然地理   9篇
  2023年   6篇
  2022年   5篇
  2021年   5篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   7篇
  2014年   4篇
  2013年   6篇
  2012年   13篇
  2011年   5篇
  2010年   3篇
  2009年   8篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2005年   1篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1997年   1篇
排序方式: 共有99条查询结果,搜索用时 213 毫秒
31.
Simulations of the Regional Climate Model Version 3 (RegCM3) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario were employed to investigate possible decadal changes and long-term trends of annual mean atmospheric water balance components over China in the 21st century with reference to the period of 1981-2000. An evaluation showed that RegCM3 can reasonably reproduce annual evapotranspiration, precipitation, and water vapor transport over China, with a better performance for March-June. It was found that the water vapor exchange between the land surface and atmosphere would be significantly intensified in Northwest China by the mid-to late-21st century and that the region would possibly shift to a wetter or drought-mitigated state under global warming. Conversely, the water vapor exchange evidently weakened over the Tibetan Plateau and South-west China by the mid-to late-21st century. In addition, there appears to be a drier state for Northeast China and the middle and lower reaches of the Yangtze River valley by the mid-to late-21st century, with slight mitigation by the end compared with the mid-21st century. The westerly and southwesterly water vapor transport over China generally presents an increasing trend, with increasing diver-gence over the Tibetan Plateau and Northeast China, corresponding to a loss of atmospheric water vapor by water vapor transport.  相似文献   
32.
以湄公河流域为研究区,采用区域气候模式RegCM3为模拟工具,以根系层土壤含水量为代表性指标,对A1B情景下未来研究区月尺度农业干旱进行了预估。基于地表能量平衡原理,系统分析了降水、蒸发、地表温度和根系层土壤含水量等农业干旱主要影响因素与区域气候模式模拟的大气环流、地表感热通量、地表潜热通量、地表净通量之间的联系和变化规律,从气陆间能量和水汽通量平衡角度,对农业干旱发生机理进行了识别。预估结果表明:从年内各月地表净通量和地表温度变化来看,未来春末(6月)和秋末(10月)湄公河流域温度增加明显,且土壤含水量减少也较为明显;同时,这两个时段蒸发旺盛和降水减少的趋势,有可能导致流域局部地区(尤其是非灌溉农业区)农业干旱的发生。  相似文献   
33.
东亚夏季风过程大气低频振荡的数值模拟研究   总被引:3,自引:2,他引:1       下载免费PDF全文
利用区域气候模式RegCM3对东亚夏季风及其中的大气低频振荡(LFO)进行了模拟研究。(1)进行控制试验,借助Lanczos带通滤波等方法分析了实测及模拟结果LFO强度和传播等特征,检验RegCM3对夏季风LFO的模拟能力;(2)通过增、减南海表面海温两个敏感试验探讨海温异常变化对LFO各特征的影响,并探究异常海温下的LFO与季风爆发时间的可能联系。结果表明:季风LFO强值集中在低纬地区,低纬夏季强冬季弱,高纬则相反。季风爆发前后的发生南传向北传的转换。模式RegCM3对季风区LFO基本特征有较好的把握,但高纬地区偏强。南海异常增(减)温有利于季风提前(推迟)爆发,也有利于LFO传向发生转换时间的提前(推迟)。说明季风爆发时间与LFO传向转换存在一定联系。两个试验均有使振荡能量大值区南移的趋势,且通过LFO的变化造成较高纬地区季风后期的气候异常。  相似文献   
34.
我国东南沿海及台湾海峡地区地形和下垫面情况复杂,积云对流活动强烈,这给该地区降水的模拟和预测带来很大困难。为探讨不同积云对流参数化方案在我国东南沿海及台湾海峡地区的适用性,选择了4种参数化方案(Anthes-Kuo方案、Arakawa-Schubert方案、Fritsch-Chappell方案和MIT-Emanuel方案),基于区域气候模式RegCM 4.0分别模拟了该地区的降水情况,并选用了与模式分辨率相当的TRMM(Tropical Rainfall Measuring Mission,0.25°×0.25°)月平均降水资料进行验证。模拟结果表明,4种方案均能大致模拟出我国东南沿海及台湾海峡地区降水的空间结构和季节变化特征。其中,Fritsch-Chappell方案和MIT-Emanuel方案均能较好地模拟出降水空间分布,包括台湾岛南部和广东沿海的降水极值中心,而MIT-Emanuel方案降水的季节和年际变化特征模拟最好,如能够基本再现夏季降水在6月和8月份的双峰结构。此外,基于各高度层假相当位温的计算结果表明,MIT-Emanuel方案模拟的对流活动强烈,产生的对流性降水较多,使得其模拟的降水量值更接近实测资料。因此,MIT-Emanuel方案可能是最适用于模拟我国东南沿海和台湾海峡地区降水的积云对流参数化方案。  相似文献   
35.
区域气候模式RegCM3对中国夏季降水的模拟   总被引:5,自引:0,他引:5  
利用意大利国际理论物理中心(ICTP)最新发布的区域气候模式RegCM3检验我国包括青藏高原地区夏季降水的模拟能力。初始值及边界值取自美国国家环境预测中心(NCEP)和国家大气中心(NCAR)的全球再分析资料。模式积分时间为2005年5月1日到2005年8月31日,考虑到模式的“spin-up”时间,只对6月1日-8月31日的模式结果进行分析。模式水平分辨率取为60km,范围包括整个青藏高原在内的我国及周边地区(14°-55°N,70°-140°E)。结果表明:RegCM3具有模拟我国夏季降水主要分布特征的能力,尤其在观测站点稀少的青藏高原地区可提供局地降水分布的较可靠信息。模式较好地模拟了包括整个青藏高原在内的我国区域降水的月际尺度变化和空间分布等基本特征,但对我国东南地区的夏季降水模拟能力有待进一步提高。  相似文献   
36.
利用区域气候模式RegCM4.5,分别选取不同陆面参数化方案和空间分辨率,对5个长江流域降水异常年份进行短期气候回报试验,分析对气温和降水预测效果的影响及其最优组合。结果表明:空间分辨率的提高可以改善流域降水和气温的预测性能;而不同陆面方案引起的地表净辐射能量分布不同及其地表蒸散差异,最终导致流域内气温和降水预测效果不一致。RegCM(CLM4.5+30 km)对流域内小雨预测结果最好,而RegCM(BATS+30 km)预测流域内大雨和暴雨效果最优;RegCM(CLM3.5+30 km)对流域内气温预测能力最好。  相似文献   
37.
Based on RegCM4, a climate model system, we simulated the distribution of the present climate (1961-1990) and the future climate (2010-2099), under emission scenarios of RCPs over the whole Pearl River Basin. From the climate parameters, a set of mean precipitation, wet day frequency, and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21st century. Meanwhile the return values of precipitation intensity with an average return of 5, 10, 20, and 50 years are also used to assess the expected changes in precipitation extremes events in this study. The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5. The annual, spring and winter average precipitation decreases while the summer and autumn average precipitation increases. The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase. The wet day percentiles (q90 and q95) also increase, indicating that precipitation extremes intensity will increase in the future. Meanwhile, the 5-year return value tends to increase by 30%-45% in the basins of Liujiang River, Red Water River, Guihe River and Pearl River Delta region, where the 5-year return value of future climate corresponds to the 8- to 10-year return value of the present climate, and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080s under RCP8.5, which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events.  相似文献   
38.
A long-term simulation for the period 1990–2010 is conducted with the latest version of the International Centre for Theoretical Physics' Regional Climate Model(RegCM4), driven by ERA-Interim boundary conditions at a grid spacing of 25 km. The Community Land Model(CLM) is used to describe land surface processes, with updates in the surface parameters,including the land cover and surface emissivity. The simulation is compared against observations to evaluate the model performance in reproducing the present day climatology and interannual variability over the 10 main river basins in China,with focus on surface air temperature and precipitation. Temperature and precipitation from the ERA-Interim reanalysis are also considered in the model assessment. Results show that the model reproduces the present day climatology over China and its main river basins, with better performances in June–July–August compared to December–January–February(DJF).In DJF, we find a warm bias at high latitudes, underestimated precipitation in the south, and overestimated precipitation in the north. The model in general captures the observed interannual variability, with greater skill for temperature. We also find an underestimation of heavy precipitation events in eastern China, and an underestimation of consecutive dry days in northern China and the Tibetan Plateau. Similar biases for both mean climatology and extremes are found in the ERA-Interim reanalysis, indicating the difficulties for climate models in simulating extreme monsoon climate events over East Asia.  相似文献   
39.
张娇艳  李扬  吴战平  陈贞宏  杨益 《气象科技》2018,46(6):1165-1171
针对贵州省年平均降水量,年平均气温,年平均最高气温和年平均最低气温四个特征量,从空间分布上的定性比较,从年际、年代际的时间演变比较以及从泰勒图的定量比较来看,RegCM4模式的模拟效果优于CMIP5模式,因此本研究在RCP4.5排放情景下利用RegCM4模式数据预估未来2018—2050年贵州省年平均降水量,年平均气温,年平均最高气温和年平均最低气温。结果表明:21世纪Ⅰ阶段(2018—2028年)相对于基准期年平均降水在全省大部地区均是偏少的,偏少幅度在8.5%以内,其中贵州省北部地区偏少幅度最大;21世纪Ⅱ阶段(2029—2039年)相对于基准期贵州省中西部降水偏少东部降水偏多,变化幅度基本上在7%以内;21世纪Ⅲ阶段(2040—2050年)相对于基准期贵州省南部和东部降水偏少西北部降水偏多,变化幅度基本上在7.5%以内。贵州省21世纪Ⅰ阶段、Ⅱ阶段、Ⅲ阶段年平均气温、年平均最高气温和年平均最低气温相对于基准期均是偏暖的,偏暖幅度在0.6~1.3℃之间,越到后期,偏暖幅度越大,且空间差异不大。  相似文献   
40.
Climate modeling studies in the context of Indian summer monsoon (ISM) variability have usually been performed on the seasonal and interannual timescales. The present study assesses the fidelity of the Regional Climate Model (RegCM v4.6) in capturing the subseasonal active and break spells along with the seasonal mean rainfall during the ISM season. The model fields are obtained from 24 years (1982–2005) of simulation and validated against the observations and latest reanalyzed ERA5 data products. Our analysis indicates that RegCM v4.6 fairly captures the large scale features of ISM and improvement in seasonal rainfall is noted as compared to its precedent RegCM v4.4. At subseasonal timescales, though the model captures the active and break spells of ISM, the length and frequency of these events seem inconsistent as compared to the observations. Occurrences of breaks and associated circulation features are mostly consistent but the active spells are significantly misconstrued in the model. The dry air intrusion from the western region and lack of monsoon low over the mainland and Bay of Bengal seem to suppress the precipitation in the model. This subseasonal bias might persist due to systematic errors linked to the lack of ocean coupling, inefficiency of land surface and cumulus parameterization schemes in the model. Overall, RegCM v4.6 offers improvements at seasonal timescale but needs further improvements to realistically represent the subseasonal variability of ISM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号