首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
地球物理   30篇
地质学   10篇
海洋学   5篇
  2020年   2篇
  2018年   6篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   6篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有45条查询结果,搜索用时 703 毫秒
1.
Ocean Dynamics - The Bosphorus, located at the junction of Asia and Europe, controls the transports of water, material, and energy between the Black Sea (BS) and the Mediterranean Sea. The Canal...  相似文献   
2.
Saçu  Şehriban  Erdik  Tarkan  Şen  Olgay 《中国海洋工程》2020,34(6):881-888
China Ocean Engineering - Turkey has announced its plan to construct a new waterway, Canal Istanbul, parallel to the Bosphorus. In this study, the influence of Canal Istanbul on salinity...  相似文献   
3.
This article summarizes the work done over the last decades regarding the development of new approaches and setting up of new applications for earthquake rapid response systems that function to estimate earthquake losses in quasi-real time after an earthquake. After a critical discussion of relevant earthquake loss estimation methodologies, the essential features and characteristics of the available loss estimation software are summarized. Currently operating near-real-time loss estimation tools can be classified under two main categories depending on the size of area they cover: global and local systems. For the global or regional near-real-time loss estimation systems: GDACS, WAPMERR, PAGER, and NERIES-ELER methodologies are presented together with their loss estimations for the 2009 Abruzzo (L’Aquila) earthquake in Italy. Examples are provided for the local rapid earthquake loss estimation systems, including the Taiwan Earthquake Rapid Reporting System, Real-time Earthquake Assessment Disaster System in Yokohama, Real Time Earthquake Disaster Mitigation System of the Tokyo Gas Co., and Istanbul Earthquake Rapid Response System.  相似文献   
4.
5.
A review on the historical evolution of seismic hazard maps in Turkey is followed by summarizing the important aspects of the updated national probabilistic seismic hazard maps. Comparisons with the predecessor probabilistic seismic hazard maps as well as the implications on the national design codes conclude the paper.  相似文献   
6.
7.
8.
Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has some drawbacks according to fuzzy logic principles. This discussion will focus on the main fuzzy logic principles which authors and potential readers should take into consideration.  相似文献   
9.
A probabilistic assessment of the seismic hazard in Turkey   总被引:1,自引:0,他引:1  
  相似文献   
10.
Recent developments of the Middle East catalog   总被引:8,自引:2,他引:6  
This article summarizes a recent study in the framework of the Global Earth model (GEM) and the Earthquake Model of the Middle East (EMME) project to establish the new catalog of seismicity for the Middle East, using all historical (pre-1900), early and modern instrumental events up to 2006. According to different seismicity, which depends on geophysical, geological, tectonic, and seismicity data, this region is subdivided to nine subregions, consisting of Alborz–Azerbaijan, Afghanistan–Pakistan, Saudi Arabia, Caucasus, Central Iran, Kopeh–Dagh, Makran, Zagros, and Turkey (Eastern Anatolia; after 30° E). After omitting the duplicate events, aftershocks, and foreshocks by using the Gruenthal method, and uniform all magnitude to Mw scale, 28,244 main events remain for the new catalog of Middle East from 1250 B.C. through 2006. The magnitude of completeness (Mc) was determined as 4.9 for five out of nine subregions, where the least values of Mc were found to be 4.2. The threshold of Mc is around 5.5, 5.0, 4.5, and 4.0, for the time after 1950, 1963, 1975, and 2000, respectively. The average of teleseismic depths in all regions is less than 15 km. Totally, majority of depth for Kopeh–Dagh and Central Iran, Zagros, and Alborz–Azerbaijan, approximately, is 15, 13, and 11 km and for Afghanistan–Pakistan, Caucasus, Makran, Turkey (after 30° E), and Saudi Arabia is about 9 km.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号