首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cheng  Zhiheng  Pan  Hui  Zou  Quanle  Li  Zhenhua  Chen  Liang  Cao  Jialin  Zhang  Kun  Cui  Yongguo 《Natural Resources Research》2021,30(2):1481-1493

With increasing demands for coal resources, coal has been gradually mined in deep coal seams. Due to high gas content, pressure and in situ stress, deep coal seams show great risks of coal and gas outburst. Protective coal seam mining, as a safe and effective method for gas control, has been widely used in major coal-producing countries in the world. However, at present, the relevant problems, such as gas seepage characteristics and optimization of gas drainage borehole layout in protective coal seam mining have been rarely studied. Firstly, by combining with formulas for measuring and testing permeability of coal and rock mass in different stress regimes and failure modes in the laboratory, this study investigated stress–seepage coupling laws by using built-in language Fish of numerical simulation software FLAC3D. In addition, this research analyzed distribution characteristics of permeability in a protected coal seam in the process of protective coal seam mining. Secondly, the protected coal seam was divided into a zone with initial permeability, a zone with decreasing permeability, and permeability increasing zones 1 and 2 according to the changes of permeability. In these zones, permeability rises the most in the permeability increasing zone 2. Moreover, by taking Shaqu Coal Mine, Shanxi Province, China as an example, layout of gas drainage boreholes in the protected coal seam was optimized based on the above permeability-based zoning. Finally, numerical simulation and field application showed that gas drainage volume and concentration rise significantly after optimizing borehole layout. Therefore, when gas is drained through boreholes crossing coal seams during the protective coal seam mining in other coal mines, optimization of borehole layout in Shaqu Coal Mine has certain reference values.

  相似文献   

2.
Yuan  Yong  Chen  Zhongshun  Yuan  Chaofeng  Zhu  Cheng  Wei  Hongmin  Zhang  Xinwang 《Natural Resources Research》2020,29(2):931-948

Auger mining (AM) is an effective and safe way to excavate an extremely thin protective layer. This method can relieve pressure and enhance the permeability of an ultra-contiguous coal layer with high gas capacity. However, there have been few studies on AM. Based on the conditions of a coal mine in Shanxi Province, China, theoretical analyses, laboratory tests and numerical simulations were used to analyze the evolution law of the overburden permeability in an AM face. A stress–damage–permeability coupling model was proposed, and a numerical simulation algorithm for fluid–solid coupling with FLAC software was established. Through this method, the evolution law of stress and permeability and its influencing factors of the overburden of the AM face were found. The intermediate coal pillar (ICP) width and the AM height and length are the main factors influencing the permeability evolution of the AM face. The first factor determines the damage state of the ICP in the goaf, and the last two factors influence the zone size with permeability enhancement of the protected layer. Therefore, reasonable AM parameter design is the key to both safe mining operations in the AM face and pressure relief and permeability enhancement.

  相似文献   

3.

In situ stress is not only a vital indicator for selecting explorative regions of coalbed methane (CBM), but also a pivotal factor affecting CBM production. The present study explored whether in situ stress affected the development potential of CBM in western Guizhou, China. To this end, we collected injection/falloff well test data and gas content data from 70 coal seams in 28 wells. The study found that from top to bottom, strike slip fault stress fields (<?500 m), normal fault stress fields (500–1000 m) and strike slip fault stress fields (>?1000 m) were successively developed in western Guizhou. The distribution features of vertical permeability in western Guizhou are consistent with the stress fields' transformation location. The coal permeability in the western part in Guizhou presents a tendency of increase followed by decrease as a result of increased burial depth. The vertical development characteristics of coal seam gas content are controlled mainly by reservoir pressure, and the relationship between reservoir pressure and buried depth shows a linear increase. The CBM in western Guizhou is divided vertically into three development potential regions dependent on the characteristics of burial depth, permeability and gas content of coal seams. The most favorable vertical development potential region in western Guizhou is 500–1000 m. This region exhibits high gas content, high permeability and moderate burial depth, which are favorable for the production of CBM. These research results can provide basis for geological selection and engineering implementation of CBM in western Guizhou.

  相似文献   

4.
Liu  Jia  Qin  Yueping  Zhou  Tianbai  Gao  Yu 《Natural Resources Research》2020,29(6):3957-3971

The permeability of a coal seam is an important index for coal mine gas control and coalbed methane development, and its magnitude determines the degree of difficulty of gas drainage. To obtain the permeability value, a dimensionless mathematical model for dual-porosity borehole gas-coupled flow in a coal seam was established and adopted using a simulator developed by our group. A new method of inversion was developed to determine the fracture permeability coefficient λf and the matrix micro-channel diffusion coefficient Km by fitting the simulated results with onsite measured data. A range of simulations quantified the effects of different dimensionless parameters on gas migration. The results verified the feasibility of the inversion method based on the high matching degree of the fitted results, and the dimensionless mathematical model was accurate. The desorption and release of adsorbed gas from the center to the surface in coal matrices were heterogeneous, and unsteady states and gas migration times in coal matrices cannot be neglected. The new method can be introduced to analyze the problem of gas migration in different coal reservoirs, simplify the corresponding calculation and computational processes, and provide guidance in determining the permeability of coal seams.

  相似文献   

5.
Li  Qingmiao  Liang  Yunpei  Zou  Quanle  Li  Quangui 《Natural Resources Research》2020,29(2):1397-1412
Natural Resources Research - Cyclic loading widely exists in coal mining activities, and it can significantly change the mechanical and seepage characteristics of coal. In this study, raw...  相似文献   

6.
Wei  Pan  Li  Xuelong  Hu  Qianting  Peng  Shoujian  Liu  Shu 《Natural Resources Research》2020,29(6):4031-4051

Gas emission from the working face in a gas-bearing coal seam impairs safe production. Especially in the coal face, influenced by mining, pressure-relief gas in adjacent seams flows into the working face through the goaf. Moreover, caved overlying strata in different regions show differences in pore and seepage characteristics. Thus, the caving of overlying strata in the goaf of a working face was explored by carrying out physical similarity simulation. Then, based on the characteristics of the geometric shapes of caved overlying strata after mining, a trapezoidal three-dimensional model for gas extraction was established. According to the calculation result, the parameters of field high-level boreholes were optimized. Then, the controllability of gas concentration at the working face after gas extraction was assessed by applying statistical process control. The result showed that after the observed surface of the physical similarity model was lightened, it was more favorable for conducting the test. Moreover, the maximum gas concentration in the goaf was negatively correlated with the diameter of high-level boreholes and the negative pressure for gas extraction. A statistical process control chart revealed that the gas concentrations at the working face were safe after gas extraction based on high-level boreholes, which also validated the feasibility and effectiveness of the model.

  相似文献   

7.
Zhang  Qiming  Wang  Enyuan  Feng  Xiaojun  Wang  Chao  Qiu  Liming  Wang  Hao 《Natural Resources Research》2021,30(2):1817-1834

With the increasing depth of underground engineering, the risk of coal–rock dynamic disasters such as rockburst is becoming more and more serious and complex, which seriously threatens the safety of coal resource, mine production and the surface ecological environment. However, the existing risk indices and methods used for evaluating rockburst risk cannot be fully applied to deep goal seam group (DCG) mining. For the safe exploitation of coal resources, in this paper, based on statistical analyses of 300 cases of rockburst, six new indices are proposed for evaluating rockburst risk in the DCG, namely dip angle, moisture content, stability of coal seam, advancing speed of working face, disturbance factors and support patterns. In addition, the influence of multiple factors coupling and superposition on rockburst risk was considered. Thus, the Comprehensive Index Method of rockburst risk of Deep Coal seam Group (DCG–CIM) based on analytic hierarchy process was established. Finally, rockburst risk in the evaluation area was quantitatively assessed into four grades, including “No rockburst risk”, “Weak rockburst risk”, “Medium rockburst risk” and “Strong rockburst risk”. Taking the 2233 working face of Hengda Coalmine as an example, the evaluation results show that the ranges of 0–184 m, 224–284 m, 324–384 m, 424–484 m, 524–584 m and 594–624 m from terminal line of haulage roadway on 2233 working face were the medium rockburst risk zones, which are in accordance with the on-site impact damage results and are more accurate than the traditional method. The DCG–CIM can consider more inducing factors and obtain more accurate and reliable evaluation results and is more suitable for deep coal seam group mining.

  相似文献   

8.
9.
Wang  Qian  Su  Xianbo  Su  Linan  Guo  Hongyu  Song  Jinxing  Zhu  Zengliang 《Natural Resources Research》2020,29(6):3873-3893

Pseudo-reservoir stimulation in horizontal well is an effective technique for indirectly extracting coalbed methane (CBM) in soft coal from the surrounding rocks (pseudo-reservoir). However, systematic studies of the theory and on-site application of this technique are still lacking, which severely hinders its application. In this paper, the technical principles of pseudo-reservoir stimulation are analyzed firstly, and then, the technical advantages are demonstrated by experimental tests and theoretical analysis. The results show that the pseudo-reservoir generally possesses considerable gas adsorption capacity, with the gas content of 1.56–4.22 cm3/g (avg. 2.51 cm3/g) in Well XC-01, which can be extracted as supplementary resources. The fracability of the pseudo-reservoirs is 0.73–0.92, which is much higher than that of the coal seam, i.e., 0.03–0.43. Meanwhile, the compressive and tensile strength and cohesion of the pseudo-reservoir are higher than those of the coal seam, indicating pseudo-reservoir stimulation is more conducive to forming fracture network, and maintaining wellbore stability and fracture conductivity. The technical feasibility of pseudo-reservoir stimulation is determined by the regional geological conditions, showing simple tectonic conditions and well-developed surrounding rocks with high fracability and mechanical strength but low permeability, water sensitivity and water content are beneficial for the technique application. Note that the fracture conductivity in pseudo-reservoir is more stable and higher than that in coal seam, pseudo-reservoir stimulation is beneficial for the CBM extraction from both hard and soft coal seams. By minimizing the gas diffusion distance, this technique overcomes the technical obstacles to the CBM commercialized production in soft coal.

  相似文献   

10.
Yang  Xuelin  Wen  Guangcai  Lu  Tingkan  Wang  Bo  Li  Xuelong  Cao  Jie  Lv  Genshuai  Yuan  Guanghua 《Natural Resources Research》2020,29(3):1875-1896

Since most coalfields in China are commonly characterized by high gas content and low permeability, there is an urgent need to improve coal seam permeability and further enhance coal bed methane (CBM) extraction efficiency. As an emerging fracturing technology, the CO2 gas fracturing (CGF) technology has been widely used because of its advantages of low cost, environmental protection and high fragmentation efficiency. In order to improve the fracturing ability of CGF technique and optimize the release orifices of discharge head, computational fluid dynamics model was used in this paper to simulate the flow fields of dynamic pressure of gas jet released from the orifices with different structures and other geometrical parameters. The results show that the orifice structure has a great influence on the flow field of gas jet, but little influence on the magnitude of the dynamic pressure. Besides, the maximum dynamic pressure of gas jet linearly decreases with the increase in the number of release orifices. Based on a series of simulation results, the discharge head which has single group of orifices with structure c, diameter of 24 mm can be identified as the best choice for fieldwork. Then, two field experiments were conducted in Pingdingshan and Changping coal mines to evaluate the enhanced CBM extraction efficiency by CGF. The results indicate that the CGF can effectively create a large number of cracks in a large range around the fracturing borehole in the coal seam and further significantly improve the permeability. And the CBM extraction efficiency can be improved to a higher level from a lower level and maintained for a long time. Besides, the effective influence radii caused by CGF in Pingdingshan and Changping coal mines are 15.19 m and 12.5 m, respectively. Compared with other fracturing techniques, the CGF technique has a promising application prospect.

  相似文献   

11.
Wang  Fakai  Luo  Yongjiang  Liang  Yunpei  Peng  Jianming  Li  Baijun 《Natural Resources Research》2020,29(2):1351-1360

Methane content in coal seam is an essential parameter for the assessment of coalbed gas reserves and is a threat to underground coal mining activities. Compared with the adsorption-isotherm-based indirect method, the direct method by sampling methane-bearing coal seams is apparently more accurate for predicting coalbed methane content. However, the traditional sampling method by using an opened sample tube or collecting drill cuttings with air drilling operation would lead to serious loss of coalbed methane in the sampling process. The pressurized sampling method by employing mechanical-valve-based pressure corer is expected to reduce the loss of coalbed methane, whereas it usually results in failure due to the wear of the mechanical valve. Sampling of methane-bearing coal seams by freezing was proposed in this study, and the coalbed gas desorption characteristics under freezing temperature were studied to verify the feasibility of this method. Results show that low temperature does not only improve the adsorption velocity of the coalbed gas, but also extend the adsorption process and increase the total adsorbed gas. The total adsorbed methane gas increased linearly with decreasing temperature, which was considered to be attributed to the decreased Gibbs free energy and molecular average free path of the coalbed gas molecular caused by low temperature. In contrast, the desorption velocity and total desorbed gas are significantly deceased under lower temperatures. The process of desorption can be divided into three phases. Desorption velocity decreases linearly at the first phase, and then, it shows a slow decreases at the second phase. Finally, the velocity of desorption levels off to a constant value at the third phase. The desorbed coalbed gas shows a parabolic relation to temperature at each phase, and it increases with increasing temperature at the first phase, and then, it poses a declining trend with increasing temperature at the rest phases. The experimental results show that decreasing the system temperature can restrain desorption of coalbed methane effectively, and it is proven to be a feasible way of sampling methane-bearing coal seams.

  相似文献   

12.
Zhang  Yihuai  Lebedev  Maxim  Smith  Gregory  Jing  Yu  Busch  Andreas  Iglauer  Stefan 《Natural Resources Research》2020,29(3):1787-1800

Characterization of coal micro-structure and the associated rock mechanical properties are of key importance for coal seam exploration, coal bed methane development, enhanced coal bed methane production and CO2 storage in deep coal seams. Considerable knowledge exists about coal chemical properties, but less is known about the nanoscale to the micro-scale structure of coals and how they change with coal strength across coal ranks. Thus, in this study, 3D X-ray micro-computed tomography (with a voxel size of 3.43 µm) and nano-indentation tests were conducted on coal samples of different ranks from peat to anthracite. The micro-structure of peats showed a well-developed pore system with meso- and micro-pores. The meso-pores essentially disappear with increasing rank, whereas the micro-pores persist and then increase past the bituminous rank. The micro-fracture system develops past the peat stage and by sub-bituminous ranks and changes into larger and mature fracture systems at higher ranks. The nano-indentation modulus showed the increasing trend from low- to high-rank coal with a perfect linear relationship with vitrinite reflectance and is highly correlated with carbon content as expected.

  相似文献   

13.
Zhang  Lei  Huang  Mengqian  Xue  Junhua  Li  Mingxue  Li  Jinghua 《Natural Resources Research》2021,30(6):4457-4476
Natural Resources Research - Coalbed methane is a lucrative energy source, but its development relies heavily on the fracturing of coal seam and underground extraction during mining. This study of...  相似文献   

14.
内蒙古呼伦贝尔东明露天煤矿矿坑边帮地下水渗漏的问题日益严重,矿区原有的疏干降水井排水能力及效果已不能满足生产需求,同时对矿区生态环境也造成一定程度破坏。目前,对矿区周边的水文地质条件和水力联系缺乏精准全面的认识和数据。本文通过瞬变电磁法对矿区地下水渗漏较严重的西北部进行三条勘探线(77个物理点)勘查,结果表明该区存在三处视电阻率低阻异常带,判定其主要为含水断层(裂隙)所致;结合矿区地形、地层岩性与矿区地下水矿化度,对上述异常带进行了科学合理的综合解释,并结合新施工的疏干降水井抽水验证了上述异常的可靠性,为矿区后期布置疏干降水井圈定了靶区,对当地同类型矿区地下水渗漏灾害治理起到了应用示范作用。  相似文献   

15.
Hu  Shengyong  Han  Dandan  Feng  Guorui  Zhang  Ao  Hao  Guocai  Hu  Lanqing  Zhu  Liping  Li  Bo 《Natural Resources Research》2020,29(2):1361-1373

The transfer and evolution of stress among rock blocks directly change the void ratios of crushed rock masses and affect the flow of methane in coal mine gobs. In this study, a Lagrange framework and a discrete element method, along with the soft-sphere model and EDEM numerical software, were used. The compaction processes of rock blocks with diameters of 0.6, 0.8, and 1.0 m were simulated with the degrees of compression set at 0%, 5%, 10%, 15%, 20%, and 25%. This study examines the influence of stress on void ratios of compacted crushed rock masses in coal mine gobs. The results showed that stress was mainly transmitted downward through strong force chains. As the degree of compression increased, the strong force chains extended downward, which resulted in the stress at the upper rock mass to become significantly higher than that at the lower rock mass. It was determined that under different degrees of compression, the rock mass of coal mine gobs could be divided, from the bottom to the top, into a lower insufficient compression zone (ICZ) and an upper sufficient compression zone (SCZ). From bottom to top, the void ratios in the ICZ sharply decreased and those in the SCZ slowly decreased. Void ratios in the ICZ were 1.2–1.7 times higher than those in the SCZ.

  相似文献   

16.
Early phases of the Australian Stress Map project revealed that plate boundary forces acting on the Indo‐Australian Plate control the long wavelength of the maximum horizontal present‐day stress orientation in the Australian continent. However, all numerical models of the stress field to date are unable to predict the observed orientation of maximum horizontal stress in the northeast of New South Wales, Australia. Recent coal seam gas exploration in the Clarence‐Moreton Basin, eastern Australia, provides an opportunity to better evaluate the state of crustal stress in this part of the continent where only limited information was available prior to this study. Herein, we conduct the first analysis of the present‐day tectonic stress in the Clarence‐Moreton Basin, from drilling‐induced tensile fractures and borehole breakouts interpreted using 11.3 km of acoustic image logs in 27 vertical wells. A total of 2822 drilling‐induced stress indicators suggest a mean orientation of N069°E (±23°) for the maximum horizontal present‐day stress in the basin which is different from that predicted by published geomechanical‐numerical models. In addition, we find significant localised perturbations of borehole breakouts, both spatially and with depth, that are consistent with stress variations near faults, fractures and lithological contrasts, indicating that local structures are an important source of stress in the basin. The observation that structures can have a major control on the stresses in the basin suggests that, while gravity and plate boundary forces have the major role in the long wavelength (first‐order) stress pattern of the continent, local perturbations are significant and can lead to substantial changes in the orientation of the maximum horizontal present‐day stress, particularly at the basin scale. These local perturbations of stress as a result of faults and fractures have important implications in borehole stability and permeability of coal seam gas reservoirs for safe and sustainable extraction of methane in this area.  相似文献   

17.
陈沛然  王成金 《地理研究》2019,38(9):2254-2272
长江流域是中国相对完整的经济区,依托长江的煤炭运输一直是支撑流域社会经济发展的重要力量,分析长江流域港口的煤炭运输职能对揭示长江港口在流域经济发展中的作用有重要意义。基于此,本文刻画了20世纪80年代以来长江流域港口的煤炭运输格局与演化过程,重点分析煤炭进出港空间格局演变,归纳主要特征,测度空间集散水平并总结演变规律。借助区位商和进出港系数,分析了长江流域煤炭运输职能空间分异的演变过程,并探讨了不同运输职能之间的空间关系。基于不同阶段下港口煤炭运输的空间特征,本文凝练了长江流域港口煤炭运输的空间模式,全面总结了煤炭运输格局演变的驱动因素。以此,为长江流域港口的建设与功能优化提供参考。  相似文献   

18.
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which...  相似文献   

19.
Hao  Dingyi  Tu  Shihao  Zhang  Cun 《Natural Resources Research》2020,29(3):1657-1673

Bituminous coal in the Xutuan Coal Mine of the Huaibei Mining Bureau (China) is the research object of this study. The influence of moisture content on the porosity of the bituminous coal was investigated from a microscopic perspective by using a high-solution 3D X-ray micro-analyzer. The threshold segmentation method was used to segment the scanning slices of the coal samples. The threshold values of the various media were in the following order (from large to small): minerals, water, matrices, and fractures. The scanning volume and actual volume proportions of the different media in the coal samples with different moisture contents were calculated. The accuracy of the computerized tomography (CT) scanning method in measuring the coal moisture content was verified by comparison with the results obtained using the weighing method. 3D reconstructed coal samples, with different moisture contents, were analyzed, as well as separately reconstructed fractures and water in the coal samples with different moisture contents. The heterogeneity and anisotropy of the coal mass were explained quantitatively by the CT scanning intensity. A commonly used fracture classification method indicated that the primary fracture in the coal sample was a type A fracture. The results of the analysis of water in the coal fracture indicated that the porosity of bituminous coal decreased with the increase in moisture content in conditions of atmospheric pressure and a short immersion period. However, a certain level of porosity remained evident, and the degree of fracture development of the coal samples remained unchanged. This is attributed to the minor volumetric change in the minerals in the coal samples, as the water does not completely occupy the fractures in the coal samples, and the dissolution of the minerals by water is therefore not significant. The reasons for the moisture content affecting gas adsorption, seepage, and strength of a coal body were analyzed from a microscopic perspective. In addition, the types of fractures and water in the coal samples were classified by employing statistics and analyses of volume, surface area, specific surface area, and aspect ratio of the fractures and the water in the coal samples with different moisture contents.

  相似文献   

20.
Natural Resources Research - The coupling characteristics of stress, fracture, and seepage fields are significant to gas extraction and water-preserved mining. In this paper, a theoretical model...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号